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Abstract  

This study offers a novel empirical application for assessing the impact of agri-environment 

schemes (AES) on the performance of farms. The existing evidence about the environmental 

and economic impact of these schemes is still limited. Therefore, our objective is to contribute 

to the literature on the impact evaluation of AES by considering three important aspects in our 

empirical analysis. First, the performance of farms is proxied by an indicator that incorporates 

environmental externalities into production activities. Second, our empirical analysis focuses 

on a sample of Bavarian dairy farms covering the period 2013-2018, thus, we can evaluate the 

effectiveness of Europe’s agri-environmental schemes during the latest programming period. 

Finally, in an effort to increase robustness, we employ an improved version of the Malmquist-

Luenberger productivity index, which enables us to get around some of the shortcomings of the 

original index. The obtained results suggest that agri-environment payments have a limited 

effect on improving farm-level green productivity. 
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1. Introduction  

One of the main challenges linked to providing enough food and fiber for a projected global 

population of over nine billion by 2050 under changing climatic conditions remains the need to 

increase production substantially while, at the same time, reducing agriculture’s environmental 

footprint (Foley et al., 2011). A number of concepts have been developed to address this 

challenge. They range from alternative agriculture (NRC, 1989)  to green food systems 

(DEFRA, 2012), sustainable intensification (Pretty, 1997)  or climate smart agriculture (Lipper 

& Zilberman, 2018). All of these terms and concepts stress the necessity to increase the 

productivity of the agricultural sector and to simultaneously apply farming practices that are 

less harmful to the environment – a notion that has also found its way into the European Union’s 

(EU) Common Agricultural Policy (CAP). While its initial goals, listed in Article 39, paragraph 

1 of the Treaty on the Functioning of the European Union (TFEU), are centered around the 

interests of producers and consumers (increasing productivity, especially through technical 

progress, fair standard of living for farmers, stable markets, guaranteeing the availability of 

supplies, reasonable food prices), several provisions and amendments of the TFEU lay down 

additional goals and have gradually become CAP goals without being mentioned in Article 39. 

Among these are environmental protection to promote sustainable development (Article 11) or 

animal welfare requirements (Article 13) (EU, 2021).  

The latter goals shall mainly be achieved through the second pillar of today’s CAP 

architecture, which comprises specific aid programmes for rural development and 

environmentally sound farming. Its schemes are “designed to support rural areas of the Union 

and meet the wide range of economic, environmental and societal challenges of the 21st 

century” (European Parliament, 2022). They are co-financed by the EU and its Member States. 

In most Member States, the biggest parts of the second pillar budget have so far been spent on 

three measures: investment support (23% of total second pillar expenditures), agri-

environmental schemes (17%) and payments for areas subject to natural constraints or other 

specific constraints (16%) (Salhofer & Feichtinger, 2020). Especially the role of agri-

environment schemes (AES), which became compulsory elements of the CAP following the 

1992 MacSharry Reform, has become more important and popular over the years as a result of 

consistently high environmental pressure of agricultural production (Pavlis et al., 2016). For 

the 2014-2020 CAP budgetary period,  at least 30% of the Rural Development envelope were 

planned to be reserved for environmental/climate related action (being mainly covered by AES) 

(European Commission, 2021). Although agri-environment measures have evolved since their 

introduction, the core guiding principles have not changed considerably. Scheme participation 
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is voluntary; i.e., each farmer can decide whether to participate or not. Contracts are typically 

multi-annual and usually cover a period of five years.2 In general, an AES consists of a set of 

(environmentally friendly) measures or actions that farmers are expected to perform, with 

associated payments. However, in recent years, new contract designs such as result-based or 

cooperative measures have gained some popularity. Despite implementation differences on the 

national level, all AES share a number of over-arching goals. These relate to the reduction of 

the damage agricultural activities have on the environment and to the increase or stabilization 

of positive effects of agriculture (e.g., the provision of cultural landscapes or culturally 

significant agricultural practices) (Science for Environment Policy, 2017). Both goals shall be 

reached with AES design that is compliant with domestic support rules of the World Trade 

Organization (WTO). According to these rules, agricultural subsidies may only be granted if 

they qualify for the so called “Green box”, i.e., if they “have no, or at most minimal trade 

distorting effects or effects on production” (WTO 1995, S. 59). Furthermore, “the amount of 

payment shall be limited to the extra costs or loss of income involved in complying with the 

government programme” (WTO, 1995, p. 63). From a production theoretical perspective, it is 

unclear whether AES programmed under the CAP do meet the WTO requirements. Some 

empirical evidence exists that casts doubt in this respect (Mennig & Sauer, 2020; Salhofer & 

Streicher, 2005). However, these authors do not use comprehensive indicators to measure 

production effects. They focus on marketable farm output and in this way identify windfall 

effects and production impacts related to AES. If, though, production effects are defined in a 

broader sense covering marketable and non-marketable (environmental) goods, negative 

impacts of AES on yields, for example, might be offset by positive environmental effects. In 

terms of “green productivity”, AES might even have an enhancing effect, making them an 

important instrument in increasing agricultural production while, at the same time, reducing the 

burden agriculture puts on the environment and possibly being in line with WTO requirements.      

Firms‘ performance measurement that integrates, in addition to the marketable output, 

environmental externalities, especially pollution (undesirable output), into efficiency and 

productivity modeling is an increasingly important area of recent economic research. In the 

technical literature, several approaches are available for modeling pollution in productive 

technologies when measuring firm performance. First, by relying on the flexibility of the 

directional distance function (DDF), Chung et al. (1997) introduce the Malmquist–Luenberger 

(ML) index as an alternative to the traditional Malmquist index. The idea behind the ML index 

 
2 This is a major difference compared to the eco-schemes that will be introduced as part of the CAP’s first pillar 

in 2023. They can be signed up for on an annual basis.   
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is to provide a measure of productivity change that integrate environmental aspects of 

production processes. In fact, the contributions to the technical literature on the adequate 

modeling of negative externalities differ in how the corresponding technology is defined. In 

particular, there has been considerable debate about whether pollution (undesirable outputs) 

should be modeled as a typical output or rather as an input. Another question has been related 

to whether pollution should be treated as a weakly or strongly disposable output. Finally, a 

recent path-breaking approach proposes to model polluting technologies as an intersection of 

several production sets,  some of which govern the production of desirable outputs, while others 

involve by-products generating technologies  (Murty et al., 2012). Dakpo et al. (2016) provide 

a good overview of the different approaches to modeling pollution-generating technologies. 

As we are interested in measuring production-related effects of AES, especially in 

examining the productivity change, we could rely on the Malmquist–Luenberger (ML) index 

which is one of the most commonly used approaches to estimate productivity change when both 

good and bad outputs are produced. However, the ML index suffers from a number of 

weaknesses related to inconsistencies that might lead to erroneous interpretations (Aparicio et 

al., 2013, 2017). Therefore, in this paper, we rely on the recently introduced Global Malmquist–

Luenberger (GML) index (Oh, 2010), which is based on defining a global frontier that 

envelopes all observations for all periods.   

The remainder of this article is structured as follows: Section 2 describes the theoretical 

framework underlying the relationship between AES and farm performance. Section 3 describes 

the methodological approach. Section 4 gives a brief overview of the dataset, followed by a 

presentation and discussion of the main results in Section 5. Finally, Section 6 outlines the main 

conclusions. 

2. Theoretical background 

Agri-environment payments make a particularly interesting case for testing the impact of 

voluntary policy instruments on agricultural green productivity, because they ideally involve 

active changes in current farming practices. Further, decisions related to conservation and 

environmental management can significantly affect the productivity of the farm (Peerlings & 

Polman, 2004). The willingness of implementing these measures remains, though, typically 

related to a profit maximization condition. However, the assumed profit maximising behaviour 

has been contested in the literature. From this perspective, Mills et al. (2018) suggest that the 

adoption of environmental practices is motivated by extrinsic and intrinsic reasons. The former 

consists of agronomic and financial motivations. The latter is related to farmers` cultural and 
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environmental concerns. These motivations, however, are not independent and interact with 

one another. In certain situations, these interactions may create trade-offs or synergetic 

relationships. Therefore, given the substantial budget of the AES payments, testing the 

effectiveness of the schemes requires using appropriate indicators that integrate farmers’ 

environmental and economic performance.   

In the present article, we specifically investigate the impacts of AES on farm-level green 

productivity. From a theoretical point of view, the green productivity effects of agro-

environmental schemes depend on the relationship between the production of outputs intended 

by farms and the resulting environmental impacts.  For instance,  a competitive relationship 

would occur when there is a trade-off between the desirable and undesirables outputs such that 

more of one cannot be produced without less of the other 

 

Figure 1. Trade-off between one desirable output and one environmental benefit under the 

influence of an environmental policy 

Figure 1 depicts the production possibility frontier under the assumption of competitiveness 

when one desirable output 𝑦 and one environmental outcome 𝑒 are produced. Since AES 

adoption typically excludes or restricts the use of some polluting inputs that in non-windfall-

profit cases have a strong influence on the desired output, a farm adopting an AES measure will 

see its output decrease from 𝐴 to 𝐴′. This would lead to an increased environmental benefit 

𝐵′ − 𝐵. 

Previous studies presented empirical evidence of trade-offs between environmental 

benefits and conventional output (Ruijs et al., 2013, 2017). However, recent literature has cast 

doubt on this competitive relationship.  Those studies claim that some environmental benefits 

are complementary to marketable production. This has been demonstrated for the quality of 
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grassland and livestock production (Vatn, 2002), pollinator habitat and crop yields (Wossink & 

Swinton, 2007), as well as the whole ecosystem and total farm products (Hodge, 2000). Since 

farmers have enough control over their inputs, this relationship can be illustrated with a 

production possibility frontier diagram for one environmental benefit 𝑒 and one input 𝑥 (Figure 

2). A farmer who decides to join an AES might have to increase his capital from 𝐶 to 𝐶′ through 

the acquisition of new manure-spreading machinery. This new investment will likely lead to 

better economic results (from savings effects) and will also result in environmental 

improvements (from 𝐵 to 𝐵′). 

 

Figure 2. Trade-off between one input and one environmental benefit under the influence of 

an environmental policy 

The assumptions discussed in the figures above are simple cases of one good output and 

one environmental benefit (Figure 1) and one input and one environmental benefit (Figure 2). 

The empirical application of this paper is, however, related to productivity change, which is 

also related to the difference between efficiency levels achieved in different periods of time. 

Productivity measurement requires a more complex modelling, such as the one in this article, 

where we take into consideration a variety of inputs and both desirable and undesirable outputs. 

Furthermore, productivity change can be decomposed into various components, which adds to 

the relevance of performing productivity measurement by strengthening its explanatory power.  

More specifically, we retain a specification that allows productivity change to be decomposed 

into efficiency, and technological change (Nishimizu & Page, 1982). Efficiency change refers 

to the distance of the evaluated firm to its production frontier between periods 𝑡1 and 𝑡2. On the 

other hand, technological change is identified as a measure of how the technology has 

progressed (upward shift) or deteriorated (downward shift) over time.  
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From an agri-environmental policy perspective, AES participating farms are ideally 

expected to introduce new farming practices that require more of some (ideally non-polluting) 

inputs (e.g., high-quality fertilizer spreader), but may reduce the need for other (polluting) 

inputs (e.g. pesticides). At this point, it is unclear whether AES tend to improve green 

productivity or not. Any possible effect depends on the farm-level relationship between input 

use and marketable and non-marketable outputs produced. If the production relationship 

between agricultural outputs and environmental benefits is assumed to be complementary, it 

can be expected that AES participation will increase green productivity. If this relationship is 

assumed to be competitive, we would expect a differential effect on efficiency and 

technological change. Indeed, a positive (negative) association between AES and technical 

efficiency or technological change can be viewed as an indication of success (failure) in 

improving technical and economic (environmental) performance. One rational reason behind 

this assumption is that improvements in environmental benefits should be closely related to 

green technology implementation, which does not necessarily entail technical efficiency 

improvements, which are achieved by an optimal (non-wasteful) combination of inputs to 

obtain a maximum output level. 

 

3. Methodology 

3.1 The selection bias problem  

Our empirical analysis aims at assessing whether adopting agri-environment schemes is 

associated with higher environmental and economic performance. As noted above, since the 

participation in AES is voluntary, the adoption of the programs may also be motivated by, for 

instance, a farm’s structural preconditions favourable to its environmental performance, 

indicating that environmentally friendly farming practices may have been implemented, even 

partially, in the absence of the agri-environment program. Due to this selection bias, a direct 

comparison of participating and non-participating farms will not accurately reflect the policy's 

causal effects. To address the selection bias problem, we employ the propensity score matching 

(PSM) approach.  

The aim of the matching procedure is to select a group of non-participating farms whose 

characteristics are similar to the treatment group. However, rather than relying on a large 

number of observable characteristics, Rosenbaum & Rubin (1983) propose matching the 

participating observations and control observations on their propensity scores, which are the 

probabilities of being assigned to a specific group conditional on observed characteristics and 
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can be computed by estimating a simple probit or logit model. Once PSM has been performed 

and comparable participants and non-participants observations have been identified, the GML 

index can be applied to both groups to determine unbiased estimates of productivity, efficiency, 

and technical change. 

3.2 Green Productivity measurement  

Nowadays, the method developed by Chung et al. (1997), which is based on the DDF and the 

Malmquist-Luenberger index, is the most widely used to evaluate productivity change over 

time when both desirable and undesirable outputs are produced. However, as it has been shown 

by Aparicio et al. (2013, 2017), the Malmquist-Luenberger index suffers from a number of 

weaknesses that might lead to erroneous inferences, especially in relation to the technological 

change component. Another limitation of the method of Chung et al (1997) is that it does not 

satisfy the circularity property3. Consequently, the direct comparison of two periods in contexts 

where it is important to compare the performance of more than two time periods is comparable 

to the indirect comparison of those two periods through a third period, regardless of the third 

period chosen for the assessment. Oh (2010) overcomes the problem by introducing the Global 

Malmquist-Luenberger index. This index is based on Pastor & Lovell‘s (2005) proposal to build 

a "virtual" reference technology by using all available data from all time periods.  

Although both the GML index by Oh (2010) and the ML index are based on the 

estimation of the directional output distance function, the estimation of the GML index requires 

the definition of two benchmark technologies: the classic contemporaneous technology and the 

global technology.  

The contemporaneous frontier can be represented by 𝑃𝑡(𝑥𝑡) = {(𝑦𝑡, 𝑏𝑡)| 𝑥𝑡 can produce 

(𝑦𝑡, 𝑏𝑡)}. Where each observation 𝑖 uses a set of inputs (𝑥 ∈ R+
𝑁) to produce a set of desirable 

(𝑦 ∈ R+
𝑀) and undesirable (𝑏 ∈ R+

𝐾) outputs. While the contemporaneous benchmark 

technology is only constructed at time 𝑡, the global benchmark technology is based on all 

observations for all periods and is represented as follows 𝑃𝐺(𝑥) = ⋃ 𝑃𝑡(𝑥)𝑇
𝑡=1 . Thus, the Global 

Malmquist–Luenberger index can be defined as: 

 
3 The circularity property allows evaluation of the overall effects across time using results from sub-periods. For 

example, an intermediate period 𝑡2 can be used to evaluate the productivity growth between 𝑡1 and 𝑡3. In other 

terms, the circularity condition can be expressed by (𝑡1, 𝑡3) = 𝐼(𝑡1, 𝑡3) × (𝑡2, 𝑡3),  where 𝐼(∙) is an index number. 

Additional information is available in Fried et al. (2008).  
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𝐺𝑀𝐿 =

1 + �⃗⃗� 𝐺
𝑜(𝑥𝑡, 𝑦𝑡, 𝑏𝑡; 𝑦𝑡 , −𝑏𝑡)

1 + �⃗⃗� 𝐺
𝑜(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; 𝑦𝑡+1, −𝑏𝑡+1)

 

 

(1) 

Moreover, the GML index can be decomposed into efficiency change (𝐺𝑀𝐿𝐸𝐶𝐻) and 

technological change (𝐺𝑀𝐿𝑇𝐶𝐻) (Oh 2010):  

 

 

𝐺𝑀𝐿 =
1 + �⃗⃗� 𝑡

𝑜(𝑥𝑡, 𝑦𝑡, 𝑏𝑡; 𝑦𝑡, −𝑏𝑡)

1 + �⃗⃗� 𝑡+1
𝑜 (𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; 𝑦𝑡+1, −𝑏𝑡+1)

 

 

× [
(1 + �⃗⃗� 𝐺

𝑜(𝑥𝑡, 𝑦𝑡, 𝑏𝑡; 𝑦𝑡, −𝑏𝑡))/(1 + �⃗⃗� 𝑡
𝑜(𝑥𝑡, 𝑦𝑡, 𝑏𝑡; 𝑦𝑡, −𝑏𝑡))

(1 + �⃗⃗� 𝐺
𝑜(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; 𝑦𝑡+1, −𝑏𝑡+1))/(1 + �⃗⃗� 𝑡+1

𝑜 (𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; 𝑦𝑡+1, −𝑏𝑡+1))
] 

(2) 

 

= 𝐺𝑀𝐿𝐸𝐶𝐻 × 𝐺𝑀𝐿𝑇𝐶𝐻 

In (1) and (2), the directional output distance function can be estimated by the following 

non-parametric approach for evaluating efficiency under the contemporaneous benchmark 

technology (3) and the global benchmark technology (4): 

 

�⃗⃗� 𝑜 (𝑥𝑛, 𝑦𝑚, 𝑏𝑘; 𝑦𝑚, −𝑏𝑘) = max𝛽                                                                   

s. t.                                          

∑𝜆𝑗𝑥𝑛𝑗 ≤

𝐽

𝑗=1

𝑥𝑛0, 𝑛 = 1, … ,𝑁 

∑𝜆𝑗𝑦𝑚𝑗 ≥

𝐽

𝑗=1

𝑦𝑚0 + 𝛽𝑦𝑚0, 𝑚 = 1,… ,𝑀 

∑𝜆𝑗𝑏𝑘𝑗 =

𝐽

𝑗=1

𝑏𝑘0 − 𝛽𝑏𝑘0, 𝑘 = 1, … , 𝐾 

𝜆𝑗 ≥ 0,  𝑗 = 1, … , 𝐽  

(3) 
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where the superscript 𝑗 represents the number of farms and 𝜆 denotes a non-negative 

vector. The observation is located on the frontier of production if 𝛽 equals zero.  Additionally, 

the directional distance function under the global benchmark technology set can be calculated 

through model (4):  

 

�⃗⃗� 𝑜
𝐺(𝑥𝑛, 𝑦𝑚, 𝑏𝑘; 𝑦𝑚, −𝑏𝑘) = max𝛽                                                                   

s. t.                                          

∑ ∑ 𝜆𝑗
𝑡

𝐾

𝑘=1

𝑥𝑛𝑗
𝑡 ≤ 𝑥𝑛0

𝑡 ,  𝑛 = 1,… ,𝑁

𝑇

𝑡=1

 

∑ ∑ 𝜆𝑗
𝑡

𝐾

𝑘=1

𝑦𝑚𝑗
𝑡 ≥ 𝑦𝑚0

𝑡 +  𝛽𝑦𝑚0
𝑡 ,  𝑚 = 1,… ,𝑀

𝑇

𝑡=1

 

∑ ∑ 𝜆𝑗
𝑡

𝐾

𝑘=1

𝑏𝑘𝑗
𝑡 = 𝑏𝑘0

𝑡 − 𝛽𝑏𝑘0
𝑡 ,  𝑛 = 1,… ,𝑁

𝑇

𝑡=1

 

𝜆𝑗
𝑡 ≥ 0,  𝑗 = 1,… , 𝐽  

 

(4) 

 

Any value above one in productivity, efficiency, and technological change indicates 

progress when interpreting the values of the GML index in (1) and its components in (2). As 

opposed to this, scores equal to one denote stagnation, whereas values below one are linked to 

a performance decline. 

3.3 Estimating the treatment effects 

Although PSM helps to control for potential selection bias due to observed factors, it has been 

shown that farmers' decisions to take part in agri-environmental programs may also be 

influenced by unobserved factors, such as the farmers‘ environmental motivations, which can 

be assumed to be relatively stable over time (Wilson & Hart, 2000). The use of difference-in-

difference (DiD) regression methods allows us to control for time-invariant unobserved 

heterogeneity. It involves comparing participating farms (treatment group) and their matched 

counterparts (control group), before and after the scheme’s implementation. The program 

impact (DiD) can be then estimated as follow: 

 𝐷𝑖𝐷 = 𝐸[𝑌1
𝑇 − 𝑌0

𝑇|𝑇1 = 1, 𝜋(𝑋)] − 𝐸[𝑌1
𝐶 − 𝑌0

𝐶|𝑇1 = 0, 𝜋(𝑋)] (5) 
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Model (5) aims at estimating the average effect of AES participation on an outcome 

variable (Y) using the participation status of the farm (𝜋) and farm characteristics (𝑋) for 

participating (T) and non-participating (C) farms over two periods (t = 0 and t = 1) and then 

taking the difference between the two. To derive an estimate of the program impact (DiD), a 

simple t-test is used.  

 

4. Data 

Our empirical analysis borrows from Ait Sidhoum et al. (2022) in that we make use of the same 

dataset. Thus, only a brief description will be given here. A balanced panel of 1626 Bavarian 

dairy farms, covering the period 2013–2018, is used. The year 2013 - which is the year before 

the begin of the 2014-2020 EU programming period - is defined as the pre-intervention period, 

while the year 2018 is considered to be the post-intervention period.  

Rubin & Thomas (1996) recommended that when performing PSM, all relevant 

covariates should be considered even if they are not statistically significant because the main 

requirement of PSM success remains the balance of the key covariates between the control and 

treatment groups and not the accurate estimation of the logit model. Definitions and summary 

statistics of the covariates are available in the Appendix, Table A1.  

The measurement of the GML index mainly selects livestock units (𝑥1); labour force 

(𝑥2); utilized land (𝑥3); capital depreciation (𝑥4); pesticides application (𝑥5); expenses for feed 

(𝑥6) and quantities of nitrogen input (x7).  Total farm sales (Y) and nitrogen balance (Z)4 are 

treated as output variables. Table 1 provides descriptive statistics on input and output variables 

used in the GML model. The data used in this study were a combination of two data sources: 

the Farm Accountancy Data Network in Bavaria and the official agricultural support data 

(InVeKoS) that contains further information on farm production characteristics as well as 

specific subsidy variables.   

 

 
4 We adopt Gamer & Bahrs (2010)‘s methodology to estimate the nitrogen balance output. Wendland et al. 

(2018)'s coefficients are used to estimate the quantities of nitrogen present in milk and meat outputs as well as the 

nitrogen content in feed input, while the LFL (2013)‘scoefficients are used to estimate the quantities of nitrogen 

fixed by legumes. For mineral fertilizers, the quantities of nitrogen can be calculated from the data provided in 

STATBA  (2018). 
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Table 1. Summary statistics (average and standard deviation - in parenthesis) for the main variables in the sample (828 farms) 

Variable 
Symbol Dimension 

2013 2014 2015 2016 2017 2018 
Full period 

2013-2018 

Total sales 𝑦 € 
210,665.51 

(104,027.02) 

237,141.27 

(116,735.25) 

219,212.20 

(108,614.00) 

201,702.05 

(100,998.89) 

214421.12 

(112800.45) 

257,445.99 

(142,765.69) 

223,431.36 

(112,602.11) 

Livestock 

units 
𝑥1 Number 

55.49 

(26.39) 

57.69 

(28.25) 

58.28 

(29.06) 

59.05 

(30.02) 

60.14 

(32.06) 

60.60 

(33.57) 

58.54 

(29.50) 

Labour 𝑥2 
Man-work 

units 

1.70 

(0.54) 

1.73 

(0.57) 

1.75 

(0.58) 

1.76 

(0.55) 

1.79 

(0.58) 

1.79 

(0.58) 

1.75 

(0.54) 

Land 𝑥3 hectares 
57.26 

(24.56) 

57.88 

(24.67) 

58.03 

(24.55) 

59.18 

(25.95) 

59.68 

(26.62) 

60.31 

(26.82) 

58.72 

(25.35) 

Capital 

depreciation 
𝑥4 € 

35,737.05 

(22,372.23) 

36,383.51 

(23,241.15) 

36,261.95 

(23,414.60) 

34,497.50 

(23,314.33) 

34,543.50 

(25,116.38) 

36,028.37 

(27,437.59) 

35,575.31 

(23,338.10) 

Chemicals 𝑥5 € 
13,764.52 

(10,303.63) 

14,334.55 

(9,619.82) 

13,857.73 

(10,208.55) 

13,406.20 

(10,525.50) 

11,546.54 

(8,401.37) 

11,112.76 

(7,792.39) 

13,003.72 

(9,183.28) 

Feed 𝑥6 € 
31,994.36 

(20,020.74) 

33,225.19 

(20,315.27) 

31,012.28 

(19,996.46) 

32,042.08 

(21,409.53) 

31,710.19 

(21,654.38) 

33,238.65 

(22,950.68) 

32,203.79 

(20,333.09) 

Nitrogen 

input 
𝑞 kg 

7,657.81 

(4,795.30) 

9,121.79 

(5,221.79) 

8,470.47 

(5,271.83) 

8,849.60 

(5,844.01) 

8,584.21 

(5,713.23) 

8,029.11 

(5,051.09) 

8,452.16 

(5,155.12) 

Nitrogen 

balance 
𝑧 kg 5,285.20 

(3,956.37) 

6,460.38 

(4,148.09) 

5,960.46 

(4,353.46) 

6,188.52 

(4,829.82) 

5,941.28 

(4,681.52) 

5,230.56 

(3,907.13) 

6,284.89 

(4,288.59) 

Note: Monetary variables are expressed in 2015 EUR. 
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5. Results 

5.1.Estimating the propensity score 

Propensity score matching was performed to balance farm characteristics between farms that 

participated and farms that did not participate in agri-environmental schemes. After having 

defined the treated and untreated farms and the potentially relevant covariates for the matching 

procedure, the propensity score5 is calculated using a logit regression as a measure of the 

probability that a farm will be classified as a program participant. Logit model results for the 

propensity score matching are presented in table A2. The likelihood ratio test is statistically 

significant at the 1% level, indicating that all farm characteristics considered are jointly 

significant in explaining program participation. Propensity scores were calculated for each 

observation based on the parameter estimates of the logit model, which were then used to match 

participant and non-participant farms. The total number of dairy farms decreased from 271 to 

138 after the PSM because the observations out of the common support have been dropped from 

the initial sample. Different matching algorithms6 were tested prior to selecting the nearest 

neighbour estimator (1:1) without replacement. Before matching, significant differences have 

been found between the treated and control group and therefore, the resultant balance of the 

relevant covariates assesses the success of propensity score estimation. Covariates' mean values 

before and after matching among the two groups are shown in the Appendix, Table A3. These 

results suggest that no significant differences7 between participating and non-participating 

farms remain after matching. We can therefore conclude that the applied matching algorithm 

worked well, as the existing observable differences have been controlled for. Once similar 

participants and non-participants have been identified, productivity, efficiency, and technical 

change can be computed based on the pooled data for all the units. 

 

 
5 The propensity score represents the conditional probability of participation for farm 𝑖 given a set 𝑋 = 𝑥𝑖  of 

observed characteristics  𝑝(𝑋) = Pr(𝑃 = 1| 𝑋 = 𝑥𝑖). The propensity score is estimated from a logit model in 

which the binary treatment variable (AES) serves as the dependent variable conditional upon the observed variables 

(covariates). 
6 We tested the most common matching algorithms: kernel matching, radius matching, and nearest neighbour 

matching without and with replacement from 1 to 10 neighbours. We compared the different matching algorithms 

and found that 1:1 nearest neighbour matching without replacement using a caliper width of 0.3 performed best. 
7 Rosenbaum and Rubin (1985) propose the additional use of standardised bias (SB) to compare treated unit means 

and untreated unit means before and after matching as a measure of covariate balance. As noted by Caliendo and 

Kopeinig (2008), a standardized bias below 5 after matching would be seen as sufficient. Our findings indicate 

that the overall SB was reduced from 38.5 to 3.2 by the matching procedure. 
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5.2. Green productivity growth 

Table 2 reports the summary statistics of the global Malmquist-Luenberger index and its 

components. These findings indicate that, on average, farms experienced a green productivity 

increase of 4.3% from 2013 to 2018. This productivity growth is mostly due to the positive 

evolution of technical change (+ 4.95%), while efficiency change is close to unity, indicating 

stagnation. In Figure 3, we report the estimated kernel density distributions of the GML and its 

components considering the performance of each farm through the whole period. The GML 

index was unimodal with a high concentration of units around the mean value. Specifically, 

with a calculated kurtosis of  3.1810,  the GML index has a more leptokurtic distribution with 

a low variation in its values, while its components – technological change and efficiency change 

- are slightly more spread out. While summarizing these findings, it is worth mentioning that 

no previous literature on green productivity of Bavarian dairy farms has been found in our 

literature review, which does not permit us to make a proper comparison with other results in 

the literature. 

The evolution of the green productivity changes and its components has experienced 

some variability over the period of study, especially since the abolition of the milk quotas in 

2015. To highlight these fluctuations, we present in table 2 the average annual change of the 

GML index and its components. Here we can notice an important drop between 2015 and 2016, 

which can be explained by the abolition of the milk quotas in 2015, which resulted in an increase 

in herd size with potentially poor dairy characteristics and therefore low economic growth 

(Osawe et al., 2021). When we explore the evolution of the technical component (GML TECH) 

and the efficiency change component (GML EFFCH) over the period of study, we notice a 

relatively similar trend over the years. An opposite trend is frequently observed in agricultural 

economics literature measuring classic productivity growth. Recent works have shown that it is 

possible to observe this opposite pattern between efficiency change and technological change 

when environmental indicators are considered as well (Dakpo et al., 2019; Pasiouras, 2013). 

This opposite trend could indicate a trade-off relationship between efficiency gains and 

investing in green technologies and environmentally sustainable practices. However, in our 

study, the finding that the components of the GML index follow a similar pattern can be 

interpreted as evidence of no trade-off between the environmental innovation effect and the 

catch-up effect. This leads us to the hypothesis that farms participating in AES might not engage 

in very innovative and differentiated production activities that could improve their farm-level 

green productivity. This hypothesis will be tested in the next sub-section using a difference-in-

difference method and system generalized method of moment.
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Table 2. Descriptive statistics of the Global Malmquist-Luenberger index and its components (2013-2018) 

 

Full Period 

2013-2018 
2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 

GML        

Average  1.0430  1.0734 0.9639 0.9624 1.0675 1.1478 

Sd 0.1583 0.1346 0.1153 0.1214 0.1693 0.1602 

       

GML EFFCH       

Average 0.9985 1.0035 1.0002 0.9807 1.0356 0.9727 

Sd 0.1220 0.0931 0.1261 0.1241 0.1362 0.1178 

       

GML TECH       

Average 1.0495 1.0717 0.9692 0.9891 1.0363 1.1811 

Sd 0.1385 0.1106 0.0989 0.1259 0.1404 0.1026 
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Figure 3. Kernel density distributions of Global ML index and its components. 
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5.3. Impact of AES on Green productivity growth  

The effects of different environmental policies on farm-level productivity have been the subject 

of a growing amount of research (Baráth et al., 2020; Bokusheva et al., 2012; Bullock et al., 

2007; Davis et al., 2012; Mennig & Sauer, 2020; Setchfield et al., 2012). However, the literature 

is less rich when it comes to the impact of agri-environmental regulations on productivity 

indices that account for both technical and environmental issues. Our conceptual approach 

clearly brings some new insights into the relationship between environmentally friendly 

farming practices and sustainable farm performance. In table 4 we summarize the results of the 

DiD method on the impact of AES on green productivity change and its components. A positive 

(negative) change indicates an increase (decrease) in the average GML values of the participants 

that is larger than the increase (decrease) of their matched non-participants. 

Table 4. Impact of AES on GML index and its components (2013-2018) 

 
GML GML EFFCH GML TECH 

 

Treated 

mean 

Control 

mean 

Treated 

mean 

Control 

mean 

Treated 

mean 

Control 

mean 

Pre-treatment 1.0780 1.0660 1.0076 0.9968 1.0725 1.0703 

Post-treatment 1.1764 1.1018 0.9963 0.9349 1.1829 1.1783 

Change 0.0627 0.0505 0.0022 

    

t-value 1.5751 2.036 0.0752 

P>|t| 0.1183 0.0438 0.9402 

 

While agri-environmental policies were initially implemented to mitigate the 

detrimental effects of intensive agriculture systems on the environment, a number of studies 

have shown the potential of these agri-environment measures to strengthen the economic 

viability of agricultural holdings (Harkness et al., 2021). Given that economic considerations 

are important drivers of farm-level production decisions,  evaluating the effectiveness and 

impact of environmental support programs cannot be done without examining the economic 

dimension. Our GML index that aimed at specifying green productivity indices is therefore 

based on this approach that accounts for both environmental and economic performances. As 

we explained in the second sectuion of this paper,  it is reasonable to expect that AES will have 

a positive impact on green productivity, and at least should not prevent its improvement. The 

reasons for this belief are related to the fact that AES would stimulate input 

productivity(Bokusheva et al., 2012) , and relying on the Porter hypothesis theory, AES are 

expected to stimulate environmental innovation and thus improve green productivity (Porter & 
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der Linde, 1995). The corresponding DiD parameter (based on a t-test) that represents the 

impact of AES on the GML index is positive (0.06) but not statistically significant, suggesting 

that the average change in green productivity from 2013 to 2018 does not significantly differ 

between the participating and the non-participating farms. Although this finding is not 

statistically significant, there is some evidence of a positive green productivity effect of AES 

adoption. In summary, by the absence of a clearly positive effect, our results point to an 

ineffective implementation of the existing schemes in terms of improving green productivity.8  

Turning to the potential impact of AES on the components of the GML index, the technical 

efficiency change (GML EFFCH ), and the technological change (GML TECH), there are some 

interesting results. First, in the sample period, the AES payments seem to have a significant and 

positive effect on efficiency change with an average growth of 5.05%. The efficiency change 

component accounts for catching up effects that could include learning by doing, improved 

production practices, and diffusion of new technological solutions, among others. Thus, 

efficiency growth can be reasonably interpreted as the result of a more optimal combination of 

inputs to produce a given quantity of outputs. Given this background, our findings may reflect 

technical and economic improvement induced by the agri-environmental programs. This effect 

is not expected as the schemes were implemented to improve environmental outcomes, but 

might reflect windfall gains (Chabé-Ferret & Subervie, 2013; Hynes & Garvey, 2009). Second, 

AES participation has been found to have no significant effect on technological change values. 

This shows that a positive shift in the production frontier cannot be purely induced by 

implementing agri-environmental measures. Technological progress, also known as the change 

in the best practice frontier can mainly be attributed to an effective long-term planning and 

timely capital investment. For the dairy farm sector, market developments and policy reforms 

to promote environmental sustainability represent the driving force behind the adoption of 

cutting-edge technologies to foster technological change, which in turn can be considered as a 

measure to evaluate the deployment of new production technologies and practices (e.g. 

fertilization process, pest management, precision agriculture, etc.). In contrast to the possible 

effect on efficiency change, the level of technological progress should be higher for the 

participating farms. According to some scholars, this is related to one of the key features of 

environmental programs which is the promotion of investment in environmental technologies 

to improve environmental performance and competitiveness9 (Jaffe & Palmer, 1997; Matzdorf 

 
8 It is crucial to contextualize this finding. Increasing green productivity is not usually the primary goal of the AES. 

However, this should not compromise the main contribution of this work, which is the development of a framework 

to assess the environmental economic impact of the schemes. 
9 On the other hand, non-participation in AES does not keep farmers from investing into new technology (e.g., 

using other investment subsidies), keeping pace with AES participants. 
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& Lorenz, 2010). In our case, we do not observe any significant differences in terms of increased 

labour or capital investment for the post-treatment period between participating and non-

participating farms. Therefore, this confirms that the participation in Bavarian agri-environment 

schemes seems to be not an important factor affecting environmental technologies 

implementation. This finding is consistent with the argument that most of the existing agri-

environmental contracts do not require a significant shift in farming practices (Burton & 

Schwarz, 2013; Wilson & Hart, 2001). 

5.4. The dynamic impact of AES 

Using a difference-in-difference approach combined with matching to estimate the effect of 

agri-environmental programs on farm performance helps us to account for some econometric 

challenges such as unobserved farm heterogeneity and sample selection bias. However, other 

issues such as the dynamic nature of the productivity change and the need to adequately solve 

possible endogeneity problems require the use of dynamic panel regression techniques. The 

system GMM is employed as the most appropriate estimation approach that addresses the 

econometric challenges associated with the relationship between AES payments and green 

productivity. The approach can estimate a possible lagged effect of AES on green productivity, 

with the potential of taking into account time-varying unobserved heterogeneity through the use 

of instrumental variables (time lags of the endogenous variable). Results of the dynamic impact 

of AES on green productivity of a sample of Bavarian dairy farms from 2013 to 2018 are shown 

in Table 5. 
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Table 5. Dynamic impact of AES on GML  (2013-2018) 

  Model 1 Model 2 

TFP (t-1) 0.732*** (0.079) 0.722*** (0.083) 

AES per ha (t-1) -1.0E-04 (1.5E-04) -1.4E-04 (1.6E-04) 

Farm size class (1=reference)   

2 0.013 (0.014) 0.019 (0.014) 

3 0.021 (0.017) 0.028* (0.017) 

Capital-labour ratio  -6.8E-07 (6.8E-07) 

Share grassland  0.007 (0.043) 

Insurance per ha  -3.3E-05 (8.6E-05) 

Year (2013=reference)   

2014 0.318*** (0.088) 0.341*** (0.092) 

2015 0.235*** (0.087) 0.257*** (0.091) 

2016 0.218*** (0.084) 0.239*** (0.088) 

2017 0.299*** (0.083) 0.321*** (0.086) 

2018 0.416*** (0.084) 0.438*** (0.088) 

Number of observations 690 690 

Number of instruments 31 34 

AR(2) (0.109) (0.117) 

Sargan  (0.000) 

Hansen stat,  (0.009) 

Note: Considering the possible serial correlation, we perform the Arellano-Bond test of second-order 

autocorrelation on the residual from the System GMM approach. The results indicate that the null of no serial 

correlation cannot be rejected in both models, suggesting serial correlation is not an obvious problem for our 

estimation. 

Sargan and Hansen statistics give the test for for over-identifying restrictions. The null of exogenous instruments 

can be rejected with small levels of significance. Nevertheless, because appear to be weakened by a high instrument 

count, these tests should be interpreted with caution. Additionally, it is worth mentioning that we ran the model 

with a reduced instrumental variable set and the results remain unchanged no matter whether Sargan and Hansen 

statistics rejected or accepted the null hypothesis. 

Significance levels are as follows: *** = 1%, ** = 5%, and * = 10% 

  

 

 

 

 

 

 

 



21 

 

Model 1 represents the results of the system GMM approach without considering control 

variables, while Model 2 gives the regression results when the control variables are included in 

the analysis.10. Turning to the estimation results, the first‐order lag of GML index is found to 

be positive and significant in both dynamic models. This implies that previous farm 

performance indices matter and should be taken into account, and the result is consistent with 

previous literature that highlighted the role of production history (Zeng et al., 2017; Zhengfei 

& Lansink, 2006). For lagged effects of AES (model 1)11, we find that increasing the amount 

of schemes payments has no effect on green productivity.  This result in general points in the 

same direction as our previous findings. This can be taken as empirical evidence that Bavaria's 

current agri-environmental policy is insufficient to foster green economic growth. 

In sum, our findings show that there is no powerful connection between agri-environmental 

policy and dairy farmers' green productivity. Our analysis is based on a single AES variable 

that includes measures related to grassland protection, arable land, and organic farming. While 

measures for arable land12 have mainly focused on the implementation of diversified crop 

rotations, conservation tillage, and the use of cover crops, grassland measures mainly aimed at 

restricting the use of mineral fertilisers, as well as putting a limit on the number of animals per 

hectare (they have a lot in common with organic farming measures). While the latter are 

typically some schemes that should have a positive impact on green productivity when nitrogen 

pollution is considered, future research should separate the possible differential effects of 

grassland measures from arable measures on green productivity.  

 

 

 

 

 

 

 
10 Both models account for time and farm size effects. 
11 Although after adding some control variables, the lagged effects of AES variable  still shows a non significant 

impact on green productivity in dynamic Model 2. 

12 These practices do not usually impose restrictions on the use of productive inputs (e.g. mineral fertilizers) 
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6. Concluding remarks  

This study analyses the green productivity change related to AES participation using panel data 

covering a sample of Bavarian dairy farms observed between 2013 and 2018, through the use 

of the Global Malmquist-Luenberger index. Given the high levels of nitrogen pollution resulting 

from dairy production affect water quality in Bavaria, our farm-level total factor productivity 

index incorporates undesirable outputs in the form of the nitrogen balance. We then investigate 

the effects of agri-environmental scheme payments on farm performance using the combined 

difference-in-difference propensity score matching estimator. First, we find that the average 

TFP change in our Bavarian sample dairy farms increased by 4.3%, which is equivalent to an 

average annual increase of 0.86 %, in line with commonly reported productivity estimates for 

German dairy farms (e.g., (Frick & Sauer, 2018; Sauer & Latacz-Lohmann, 2015). These 

studies, however, focus exclusively on measuring classic TFP changes and do not consider the 

presence of undesirable outputs. 

Second, we find that AES payments have a limited effect on improving farm-level green 

productivity, as suggested by some literature (Baráth et al., 2020; Mary, 2013; Mennig & Sauer, 

2020). Although the mean effect was estimated to be approximately 6%, the estimate was not 

statistically significant. Moreover, in contrast with previous works, we are able to show that 

AES participation has differential effects on the green productivity components. More 

specifically, we find that the AES subsidies have positive impacts on technical efficiency 

change which can be interpreted as evidence of farmers' success in optimally allocating 

resources over time. AES participation is found to have no significant impact on technological 

change. Policy-makers should create and enforce linkages between agri-environment policies 

and insurance policies that sustain economic growth and allow farmers to adopt new 

environmental technologies. 

Finally, we also find that the impacts of lagged effects of AES payments are insignificant. At 

the same time, the first‐order lag of green productivity is found to exert an influence on green 

productivity during the sample period. According to these results, agri-environment schemes 

have failed to deliver a long-term and cumulative impact on green productivity. Future research 

would be useful to test the robustness of our results using alternative datasets. The importance 

of long-term effects of environmental programs represents valuable information for policy-

makers for understanding the role of environmentally friendly farming practices for sustained 

economic and ecological benefits (Sharpley et al., 2013). 
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Appendix 

Table A1. Summary Statistics for the covariates used in the PSM in the pre-treatment year 2013.  

 Dimension Average S.d. Min Max 

AES 1 if yes, 0 if no 0.54 0.50 0 1.00 

Livestock unit number 57.11 27.43 8.00 162.00 

Labour 
Man-work 

units 
1.79 0.62 0.40 5.00 

Land Hectares 66.48 35.55 12.75 290.05 

Capital depreciation €/ha 597.55 339.56 29.81 3,145.65 

Total Sales €/ha 3,567.60 1,256.20 1,390.59 10,294.10 

Fertilizers €/ha 167.49 78.84 0 487.14 

Pesticides €/ha 63.22 39.48 0 231.47 

Feed €/ha 6.13 0.64 2.69 7.73 

Farmer's age number 56.96 9.98 33.00 91.00 

Share of arable land % 0.58 0.19 0 0.97 

Share of grassland % 0.42 0.19 0.03 1.00 

Share of rented land % 0.61 0.36 0.02 2.89 

Yield index number/ha 62.07 56.58 5.31 317.65 

Agricultural income €/ha 1,091.56 602.35 
-       

572.70 
4,059.40 

Dummy variable ‘Swabia’ 1 if yes, 0 if no 0.15 0.36 0 1.00 

Dummy variable ‘Lower 

Franconia’ 
1 if yes, 0 if no 0.10 0.30 0 1.00 

Dummy variable ‘Middle 

Franconia’ 
1 if yes, 0 if no 0.23 0.42 0 1.00 

Dummy variable ‘Upper 

Franconia 
1 if yes, 0 if no 0.20 0.40 0 1.00 

Dummy variable ‘Upper 

Palatinate’ 
1 if yes, 0 if no 0.17 0.38 0 1.00 

Dummy variable ‘Lower 

Bavaria’ 
1 if yes, 0 if no 0.03 0.17 0 1.00 

Dummy variable ‘Upper 

Bavaria’ 
1 if yes, 0 if no 0.12 0.33 0 1.00 

Dummy variable ‘no agric. 

education’ 
1 if yes, 0 if no 0.04 0.21 0 1.00 

Dummy variable ‘ skilled 

worker 
1 if yes, 0 if no 0.54 0.50 0 1.00 

Dummy variable ‘University 

education’ 
1 if yes, 0 if no 0.41 0.49 0 1.00 

Gross value added in 

agriculture, forestry, fishing 
€ million 72.46 32.34 6.00 144.00 

Gross domestic product per 

capita 
€ 27,818.60 4,782.03 18,470.00 55,265.00 

Unemployment rate % 0.03 0.01 0.01 0.07 

Workforce number 36,464.44 12,961.64 21,672.00 76,017.00 

Farmland rental price €/ha 227.78 74.47 108.00 412.00 

Number of observations 271 

 

 

 



29 

 

Table A2. Estimation of the propensity score. 

Logistic regression                           

LR chi2(27)       =      101.26 

Prob > chi2       =     0.0000 

Log likelihood =  -135.624 

Pseudo R2         =     0.272 

Number of observations     =        271 

Dependent variable: AES 

Regressors Coef. z-stat p-value 

Livestock per ha -     0.984  -1.13 0.260 

Labour per ha -     2.441  -0.14 0.889 

Land        0.040  3.88 0.000 

Capital depreciation per ha -     0.040  -0.11 0.909 

Total sales per ha        0.829  0.62 0.538 

Fertilizers per ha        0.001  0.22 0.830 

Pesticides per ha -     0.286  -1.36 0.174 

Feed per ha -     0.326  -0.89 0.376 

Ln farmers’ Age -     0.917  -0.97 0.334 

Share arable land -     7.580  -2.69 0.007 

Share Grassland -     2.576  -2.5 0.013 

Share rented land        0.155  0.62 0.537 

Ln Yield index per ha        0.674  1.71 0.087 

Agricultural income per ha        0.475  0.63 0.528 

Dummy variable ‘master’s certificate or 

‘university degree        1.012  1.31 0.190 

Dummy variable ‘‘in education or skilled 

worker”        0.621  0.81 0.418 

Dummy variable ‘Swabia’ -   17.295  -0.01 0.993 

Dummy variable ‘Lower Franconia’ -   16.946  -0.01 0.993 

Dummy variable ‘Middle Franconia’ -   15.657  -0.01 0.993 

Dummy variable ‘Upper Franconia -   14.582  -0.01 0.994 

Dummy variable ‘Upper Palatinate’ -   15.675  -0.01 0.993 

Dummy variable ‘Upper Bavaria’ -   17.383  -0.01 0.993 

Ln Gross domestic product per capita        1.752  1.51 0.132 

Unemployment rate        0.446  0.42 0.674 

Gross value added in agriculture, forestry, 

fishing        0.818  2.25 0.024 

Intercept -     9.502  -0.01 0.996 
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Table A3. Average and bias reduction of key covariates before and after matching for the pre-

intervention period (2013). 

Variables 

Before matching After matching Standardised Bias 

Control 

mean 

Treated 

mean 

Control 

mean 

Treated 

mean 

Before 

matching 

After 

matching 

Livestock 

units per ha 

1.050*** 

 

0.840 

 

0.949 

 

0.947 

 

-59.8 

 

-0.7 

 

Labour per ha 
0.036** 

 

0.028 

 

0.032 

 

0.032 

 

-60.1 

 

6 

 

Capital 

depreciation 

per ha 

628.810** 

 

572.210 

 

592.270 

 

602.590 

 

-16.5 

 

3 

 

Sales per ha 
3,913.70** 

 

3,275.60 

 

3,564.100 

 

3,574.100 

 

-51.7 

 

0.8 

 

Fertilizers per 

ha 

178.080** 

 

158.750 

 

163.830 

 

166.070 

 

-24.6 

 

2.9 

 

Pesticide per 

ha 

62.950 

 

63.460 

 

60.068 

 

59.446 

 

1.3 

 

2.6 

 

Feed per ha 
606.980*** 

 

501.440 

 

564.640 

 

553.360 

 

-32.4 

 

-3.5 

 

Share of 

arable land 

 

0.571 

 

0.589 

 

0.571 

 

0.573 

 

9 

 

1.1 

 

Share of 

grassland 

0.427 

 

0.411 

 

0.425 

 

0.426 

 

-8.2 

 

0.5 

 

Yield index 

per ha 

77.833*** 

 

49.025 

 

56.518 

 

 

58.738 

 

-51.4 

 

4 

 

GDP 
28,240.000*** 

 

27,454.000 

 

28,031.000 

 

28,033.000 

 

-16.6 

 

0.1 

 

Number of 

dairy farms 
124 147 69 69   

Total number 

of farms 
271 138   

*, **, *** Statistical significance at 5%, 1%, and 0.1%, respectively, of a t-test on the equality of mean 

differences between observations from the treated and the control group. 

 

 

 

 

 


