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Abstract

In developing countries, certain specialty crops, highly consumed for their culture,
often face increased vulnerability to price fluctuations along supply chains due to nat-
ural disasters and climate crises. Onions in India are a prime example. Leveraging
monthly-level price data along the onion supply chain from March 2010 to April 2022,
this study explores the price dynamics among onion arrivals, retail and wholesale
prices, alongside rainfall anomalies across four major cities in India. Using the vector
autoregressive model with exogenous variables (VAR-X), our core finding reveals that
rainfall anomalies have a significant yet contrasting effect on prices along the onion
supply chain. This study also examines the price transmission dynamics between re-
tail and wholesale prices, in conjunction with onion arrivals. Our findings contribute
to shaping targeted pricing policies for policymakers at various stages within the sup-
ply chain in agrarian economies.
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1 Introduction

Countries exhibit remarkable variations in their consumption patterns, particularly con-

cerning crops beyond their staple food sources. The distinct propensity of each nation

towards consuming specific crops stems from a multitude of cultural and historical factors

(Saberi, 2010; Mousavi and Bathaie, 2011; Benn, 2015; Martínez et al., 2015). For instance,

China’s elevated tea consumption finds its roots in the age-old practice of the revered tea

ceremony. In Iran, the widespread consumption of saffron, among the world’s most valu-

able spices, is deeply embedded in the rich cultural heritage of Persian cuisine. Across the

Andean region of South America, quinoa has been a staple for millennia, holding profound

dietary significance within indigenous communities like the Incas.

The consumption preferences for specialty crops in each country are sometimes thrust

into the forefront as major issues in agricultural policies. Particularly, unlike well-established

policies supporting specialty crops and price protection in developed nations, the sharp

decline in production volume or the volatility in prices due to external shocks like cli-

mate and weather often sparks political instability in developing countries (Wischnath

and Buhaug, 2014; Patel and McMichael, 2014; Bellemare, 2015; Demarest, 2015; Soffiantini,

2020).

In India, onions play an indispensable role in both cuisine and everyday life, bearing

immense significance deeply embedded in its culinary heritage (Sen, 2004; Tamang, 2016;

Sharangi and Acharya, 2018; Shukla and Yadav, 2018). They stand as a fundamental fla-

vor enhancer in Indian dishes, imparting a unique taste and fragrance to a wide array of

meals, ranging from savory curries to piquant chutneys. Beyond their culinary prowess,

onions offer notable nutritional benefits, enriched with antioxidants and vital vitamins.

Culturally, they signify an integral aspect of traditional cooking methods across diverse

regions, forming the essence of numerous recipes. Much akin to the metaphorical idea

of ’peeling the layers of an onion’ (’pyaaz ke chilke utarna’ in Hindi), exploring the role

of onions in Indian culinary traditions reveals their multifaceted importance—not merely

1



an ingredient but intricately woven into the very essence of daily dietary practices and

cultural heritage.

Despite the importance of onions in India’s food culture, the Indian onion market is,

however, plagued by notable volatility and price uncertainty (Raka et al., 2017; Birthal

et al., 2019; Gummagolmath et al., 2020; Rakshit et al., 2021). This predicament stems from

various factors, including low price and income elasticity of demand, unstable production,

market inefficiencies, weak supply chains, and the influence of traders’ cartels (Chengappa

et al., 2012). One notable incident occured back in late December 2010 where a sharp surge

in onion prices was observed nationwide due to a poor harvest, leading to reduced supply.

Anomalies in November’s rainfall adversely impacted onion production, depleting exist-

ing stocks in storage and resulting in a lack of fresh arrivals to meet the escalating demand.

This scarcity caused a staggering 135% increase in retail prices (Varma, 2010).

The erratic fluctuations in onion prices frequently result in political protests and so-

cial unrest within Indian society. When prices rise, political parties in opposition take to

the streets to stage mass protests, and when prices slump, disgruntled producers have

dumped their produce on the streets (Matthan, 2022). Since 2011, there have been nu-

merous instances of sharp increases in onion prices, resulting in a total of eleven protests

by both producers and consumers (Rutledge, 2020). These recurring episodes of unrest

prompted government intervention to stabilize the unpredictable price movements. There-

fore, understanding how extreme weather events affect the price and volatility of onions

in the onion supply chain is therefore important for Indian consumers, producers, and

society at large.

To deepen our comprehension, this paper aims to develop a model examining the in-

terconnectedness between onion arrivals, retail and wholesale prices, taking into account

the exogenous variable of rainfall anomalies. Leveraging monthly-level price data ob-

tained from the Department of Consumer Affairs of India combined with rainfall data

from the India Meteorological Department from March 2010 to April 2022, we examine the

impact of rainfall anomalies on arrivals, wholesale and retail prices of onions along the
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supply chain for four major Indian cities. We then compare these findings with the coun-

terfactual where there is normal rainfall. Specifically, we employ the vector autoregressive

model with exogenous variables (hereafter VAR-X model) to analyze the dynamic interac-

tion among retail, wholesale, and market arrival prices (treated as endogenous variables),

alongside rainfall anomalies (considered as an exogenous variable).

We find that rainfall anomalies have a significant yet contrasting effect on prices across

the onion supply chain. Our results indicate that rainfall anomalies have significant pos-

itive effects on onion prices while yielding negative effects on arrivals. When integrating

the average of rainfall anomalies over the last 26 months into the VAR-X model, the fore-

casted retail and wholesale prices increase, exerting the upward pressure that falls within

a range of 8% to 17% for all cities. Initially, both retail and wholesale prices do not respond

significantly to rainfall shocks, but they subsequently undergo a sharp increase followed

by a gradual decrease in all cities. Conversely, rainfall anomalies result in a reduction in

onion arrivals, ranging from 2% to 6%. The response of arrivals to rainfall shocks varies

across cities: Chennai and Mumbai exhibit a distinct decline in arrivals, particularly pro-

nounced in Chennai. In contrast, while Delhi experiences a slight negative effect on ar-

rivals about three months later, Kolkata shows no significant impact on arrivals.

Next, we examine the price transmission dynamics between retail and wholesale prices

alongside onion arrivals. Upon the initial impact, both retail and wholesale prices exhibit

a negative response to arrival shocks across all four cities. Meanwhile, our analysis re-

veals that wholesale prices in all cities tend not to react to retail price shocks. In contrast,

retail prices demonstrate a significant response to wholesale price shocks. We suggest

that the variations in the causality results among different markets might be attributed to

variations in reform extent, the pace of e-marketing systems adoption, and disparities in

infrastructural facilities, including storage capacity.

Our proposed model can assist policymakers in making informed decisions regarding

intervention measures, as it allows us to quantify the impact of arrivals and rainfall on

onion prices. A noteworthy observation is the practice of middlemen maintaining inven-
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tories to mitigate price fluctuations in response to temporary shifts in demand and supply,

as discussed in prior research (e.g., Maccini (1978) and Amihud and Mendelson (1983)). In

the context of India’s onion markets, changes in onion arrivals in the market can account

for a significant portion of short-term price fluctuations. Therefore, our study enriches the

understanding of the Indian onion market by quantifying the effects of arrivals on both

wholesale and retail prices.

Related Literature Weather conditions play a significant role in driving price fluctua-

tions within the onion market. Research suggests a strong correlation between climate

change-induced rainfall variability in India and its adverse effects on onion production

and subsequent price dynamics (Meshram et al., 2017; Praveen et al., 2020). Given that

onions are a staple ingredient in almost every Indian meal, any sharp increase in onion

prices resonates with the government and its constituents (Parkin and Terazono, 2019).

Recent years have witnessed anomalies in India’s rainfall patterns and delayed monsoons,

prompting the Meteorological Agency to recalibrate its normal rainfall baseline in response

to the challenges posed by climate change (Shrikanth, 2019). Current research indicates

an anticipated increase in rainfall anomalies due to climate change throughout the 21st

century (Asharaf and Ahrens, 2015; Varghese et al., 2020), including a projected growth in

inter-annual variability (Kitoh et al., 1997). Consequently, the disruptive and unpredictable

rainfall patterns resulting from anthropogenic climate change in recent decades have sig-

nificantly impacted onion production, leading to price fluctuations (Rutledge, 2020).

In a market economy, prices serve as a crucial mechanism for efficiently coordinating

a multitude of consumers and producers, each pursuing self-interest and operating with

information limited to their own preferences, technology, and constraints. Agricultural

prices, in particular, often exhibit uncertainty and unpredictability in their temporal trajec-

tories, making it challenging to discern whether external shocks will have lasting impacts.

This inherent characteristic of agricultural prices poses risks for both farmers, who may

adjust their production and input investments in response (Sckokai and Moro, 2009), and
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lower-income consumers, who allocate a significant portion of their income to food expen-

ditures (Headey and Fan, 2008).

Nevertheless, empirical research has explored the connection between rainfall anoma-

lies and agricultural prices. Prices are indirectly influenced by rainfall deviations through

their impact on crop yields and production volumes. D’Agostino and Schlenker (2016)

have concluded that climate change, leading to higher temperatures, is likely to reduce

yields. Long-term temperature increases can alter the suitability of various regions for

agricultural production (Kurukulasuriya and Mendelsohn, 2008). Numerous studies have

documented the influence of climate change and erratic weather on yields, prices, and as-

sociated risks (e.g., Tack and Ubilava (2015); Urban et al. (2015); Ubilava (2018); Chavas

et al. (2019); Connor and Katchova (2020); Perry et al. (2020); Wang et al. (2021)). These

studies have also explored the impact of crop insurance participation on the relationship

between warming temperatures and yield risk, but their focus has primarily been on the

United States or other OECD countries. There appears to be a scarcity of empirical research

on the effects of rainfall anomalies on agricultural production in developing or emerging

countries, possibly due to data limitations. In this study, we address this gap by assem-

bling data from various sources, including wholesale prices paid to retailers. Given the

increasing weather chaos caused by climate change, understanding the link between retail

and wholesale prices, as well as available supplies, is critical for comprehending interre-

gional onion flows.

Among the limited studies investigating the impact of climate change on agriculture

in India, Taraz (2018) suggests that adaptation measures are moderately effective against

moderate heat levels but much less so against extreme heat. This underscores the im-

portance of development policies that prioritize climate change-related risk mitigation.

Goyal (2010) emphasizes the role of information provision in shaping the efficiency of ru-

ral markets in India. Additionally, direct interactions between producers and processors

can prove beneficial in the context of agricultural marketing in India, as demonstrated by

the analysis of changes in the procurement strategy of a private soybean buyer in Madhya
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Pradesh, which has ripple effects on prices across agricultural mandis in the state. More

recent research by Letta et al. (2022) highlights the quick adaptation of traders in India to

rainfall anomalies, as they anticipate the impact on future supply and make corresponding

adjustments to pricing and supply decisions.

Section 2 outlines the dataset and its description. In Section 3, the empirical strategy

employed is detailed. Section 4 presents the findings derived from our empirical analysis.

Finally, Section 5 encapsulates the concluding remarks drawn from this study.

2 Data and Data Description

The data used in this study comprises wholesale and retail prices, measured in Rupees

per kilogram, sourced from the Department of Consumer Affairs of India. Information

regarding onion arrival volumes, measured in metric tonnes, was obtained from the Na-

tional Horticulture Board, a branch of the Government of India1. Across different regions

of India, we selected four major cities: Delhi, Kolkata, Mumbai, and Chennai, representing

the north, east, west, and south regions, respectively.

For our analysis of rainfall deviation, we calculated the difference between the actual

rainfall in selected Indian states and the ’normal’ amount of rainfall as determined by the

India Meteorological Department (IMD). Specifically, we computed the average rainfall

in the major onion-producing states of India, including Maharashtra, Madhya Pradesh,

Karnataka, Gujarat, Bihar, and Rajasthan, and then subtracted the corresponding normal

rainfall values as provided by the IMD. The source of this rainfall data is also the IMD.

All data used in this study are reported at a monthly frequency and cover the period

from March 2010 to April 2022. It’s important to note that, except for the rainfall deviation

data, which may include negative values, we conducted our subsequent analyses on the

logarithmically transformed data. To visually represent these data series in logarithms,

Figure 1 displays separate panels for each of the four cities (Delhi, Mumbai, Kolkata, and

1Data was sourced from the National Horticultural Board’s website: http://www.nhb.gov.in/
OnlineClient/MonthwiseAnnualPriceandArrivalReport.aspx.
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FIGURE 1: Wholesale and Retail Prices of Onions in Major Indian Cities (logged)

Notes: The solid lines denote the retail prices and broken lines the wholesale price.

Chennai), illustrating the trends in wholesale and retail prices over the study period.

The wholesale and retail price data for various cities reveal a notable pattern character-

ized by extended periods of relatively stable prices, occasionally interrupted by sharp price

spikes. These spikes may be attributed to factors such as stock shortages resulting from

inadequate storage facilities or irregularities in rainfall that impact the overall supply. It is

worth noting that the wholesale and retail price series exhibit a discernible co-movement

over time, with retail prices consistently maintaining a markup over wholesale prices, as

one would expect.

Importantly, these occasional price spikes do not appear to be driven solely by seasonal

variations. Onions are cultivated multiple times a year, during the Kharif, late Kharif, and

Rabi seasons, with harvests occurring in October to December, January to March, and

April to May, respectively. In the case of purely seasonal effects, one would anticipate
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price increases each month between harvests to account for storage costs. However, due

to the multiple harvests throughout the year, coupled with uncertainties in both demand

and supply, the observed price spikes do not adhere to the regular temporal intervals that

one might expect. Instead, these spikes occur at more extended intervals, likely influenced

by supply uncertainties and the irregularities in rainfall patterns.2

The annual onion production experiences fluctuations primarily driven by weather

conditions. Deviations from the ’normal’ levels of expected rainfall play a significant role

in influencing the variability in onion production, which, in turn, impacts the fluctuation

in onion prices. Moreover, the inadequacy and rudimentary nature of storage facilities

exacerbate these challenges. These factors collectively contribute to the irregular arrival

patterns of onions in the market. To provide a visual representation of onion availability

over time in the four different cities, please refer to Figure 2.

FIGURE 2: Arrivals of Onions in Major Indian Cities (logged)

2We consider the case where there may be nonstationary volatility in the prices, given the spikes. We make
use of the variance plot due to Cavaliere and Taylor (2007). The results show that the variance is reasonably
close to constant variance (see Figure 1A in the Appendix); and therefore, non-stationary volatility is not an
issue.
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The availability of onions exhibits significant variations among the different cities, with

Kolkata and Chennai consistently receiving lower levels of onion arrivals over time when

compared to Mumbai and Delhi.3 For a visual representation of the rainfall deviation,

as previously defined, please refer to Figure 3. Notably, our analysis reveals a substantial

escalation in the magnitude and frequency of rainfall deviation in recent years, particularly

starting from 2020 onwards.

FIGURE 3: Average Rainfall Deviation in selected Indian states

The occurrence of rainfall deviations has become increasingly frequent, with a notable

spike evident in the data for three consecutive years starting in 2020. These spikes sig-

nify a significant departure from what the India Meteorological Department (IMD) would

consider as normal rainfall patterns.

In light of this pronounced trend, we have identified the period from March 2020 to

the end of our dataset as a ’reference time frame.’ During this interval, we will conduct

an analysis to assess the impact of average rainfall deviations on the wholesale and retail

prices of onions, as well as onion arrivals, in the four major cities. To provide a point of

comparison, we will contrast these findings with a counterfactual scenario in which no

rainfall deviations occur, essentially representing normal rainfall conditions.

To facilitate this analysis, we use the forecasts generated by the VAR-X, enabling us to

quantify the percentage changes in onion prices and arrivals for the four different cities

3As with prices, we construct the variance plot for the arrivals of onions in the four major cities. Except for
Chennai, there is no clear signs of non-stationary volatility. The results are in Figure A1 in the Appendix.
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attributed to these rainfall anomalies.

We have calculated several key statistical measures, including the coefficient of varia-

tion (defined as the ratio of the standard deviation to the mean), skewness, excess kurtosis,

and conducted a normality test (specifically, the Jarque-Bera test). A summary of the de-

scriptive statistics for the data employed in this study is presented in Table 1 below.

TABLE 1: Descriptive Statistics

CV Skewness Kurtosis Normality
Panel A. Delhi
PR

t 0.475 1.60 [0.00] 3.84 [0.00] 152.81 [0.00]
PW

t 0.631 1.79 [0.00] 4.01 [0.00] 176.87 [0.00]
At 0.216 0.06 [0.65] 0.32 [0.43] 0.84 [0.65]

Panel B. Mumbai
PR

t 0.545 7.12 [0.00] 3.96 [0.00] 167.64 [0.00]
PW

t 0.728 1.93 [0.00] 4.71 [0.00] 226.92 [0.00]
At 0.239 0.29 [0.14] -0.04 [0.91] 2.15 [0.34]

Panel C. Kolkata
PR

t 0.566 1.89 [0.00] 6.19 [0.00] 321.06 [0.00]
PW

t 0.678 2.13 [0.00] 7.63 [0.00] 465.50 [0.00]
At 0.457 1.51 [0.00] 3.77 [0.00] 142.30 [0.00]

Panel D. Chennai
PR

t 0.554 1.88 [0.00] 5.39 [0.00] 262.72 [0.00]
PW

t 0.648 1.99 [0.00] 6.08 [0.00] 322.63 [0.00]
At 0.226 0.16 [0.42] 7.95 [0.00] 383.10 [0.00]

Notes: PR
t ,PW

t and At denote retail prices, wholesale prices and
availability of onions respectively. Square brackets indicate p-
values associated with statistical significance. CV stands for co-
efficient of variation.

Across all cities, both retail and wholesale prices exhibit a notable degree of variability,

ranging approximately between 50% to 70%. In contrast, the arrivals of onions remain

relatively stable, hovering around 22%. However, it’s worth noting that Kolkata stands out

with significantly higher variability, almost double that of the other cities, at approximately

45%.

For all the cities, both retail and wholesale prices display positive skewness, indicating
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that positive price spikes are more pronounced and prevalent than negative ones. This

observation aligns with our earlier discussion, highlighting the tendency for prices to spike

when inventories are running low or when there is a poor harvest.

In terms of kurtosis, we observe significant values in the prices, suggesting the pres-

ence of extreme values. However, when it comes to arrivals, we find that Kolkata and

Chennai exhibit extreme values, in contrast to Delhi and Mumbai, where the distribution

appears less extreme. Furthermore, our analysis indicates that the distribution of arrivals

is not normal for Kolkata and Chennai, whereas Delhi and Mumbai exhibit a more normal

distribution.

The variations in skewness, kurtosis, and the distribution of onion arrivals across the

four markets can likely be attributed to differences in their roles as major or minor onion-

producing states, as well as the number of onion-producing centers from which they source

their supply. Mumbai, situated in the largest onion-producing state, Maharashtra, re-

ceives onions directly from this prolific source. On the other hand, Delhi, while not a

significant onion-producing region itself, draws its onion supply from four major onion-

producing states: Maharashtra, Madhya Pradesh, Rajasthan, and Gujarat. In contrast,

Chennai, located in Tamil Nadu, and Kolkata, situated in West Bengal, are not part of any

major onion-producing states. Chennai receives onions from two onion-producing states,

namely Maharashtra and Karnataka, while Kolkata relies primarily on Maharashtra for its

onion supply (Gulati et al., 2022).

This information is visually represented in the map featured in Figure 4. It is plausible

that due to the advantage of either being situated in a major onion-producing state or re-

ceiving onions from multiple onion-producing states, Mumbai and Delhi may experience

more consistent patterns in onion arrivals when compared to Chennai and Kolkata.
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FIGURE 4: Geographical Distribution of Major Onion Producing States of India

3 Empirical Strategy

We have developed a dynamic model that incorporates retail and wholesale prices of

onions, as well as onion arrivals. In this model, retailers base their retail pricing deci-

sions on their observations of wholesale onion prices and onion arrivals. The retail price

is typically set as a mark-up over the prevailing wholesale price. The magnitude of this

mark-up in retail prices over wholesale prices is contingent upon the number of interme-

diaries involved between the wholesale and retail stages of the trade.

Wholesalers play a pivotal role in this process. They determine the prices at which
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they purchase onions from growers during harvest seasons and subsequently distribute

most of these onions to retailers, while retaining a smaller quantity in storage. This stored

inventory is periodically released to the market until the next harvest season when a fresh

supply of onions becomes available. For wholesalers, the challenge lies in deciding the

quantity to procure during the harvest season and the quantity to retrieve from storage.

These decisions must account for various factors, including storage costs, product deteri-

oration, and expectations of future price movements.

3.1 Structural Setting for the Onion Market

The arrivals of onion supply, denoted as At, are subject to fluctuations stemming from vari-

ations in production and storage levels in the preceding period. Notably, there is no con-

temporaneous correlation between these arrivals and onion prices, whether at the whole-

sale or retail level. This is largely attributed to the perception that the demand for onions

is characterized by a high degree of inelasticity.

In the current market framework, both wholesale and retail prices are influenced by

past arrivals and price levels, which are considered predetermined variables. In major

cities, wholesale traders have access to storage facilities. During adverse weather con-

ditions, stock hoarding practices become prevalent. This hoarding behavior impacts ar-

rivals, creating supply shortages during such periods. Subsequently, these stored onions

are released into the market when wholesale and retail prices from previous periods are at

elevated levels, with the aim of maximizing profits.

Based on these dynamics, we can formulate the structural model for the onion market

as follows:

PR
t = βPW

t + ρAt + ϕRRPR
(t−1)

+ ϕRW PW
(t−1)

+ ϕRA A
(t−1) + ηR

t (1)

PW
t = ζAt + ϕWRPR

(t−1)
+ ϕWW PW

(t−1)
+ ϕWA A

(t−1) + ηW
t (2)

At = µARPR
(t−1)

+ ϕAW PW
(t−1)

+ ϕAA A
(t−1) + ηA

t (3)
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where PR
t ,PW

t and At denote retail prices, wholesale prices and availability of onions re-

spectively. The error term ηA
t in (3) is seen as a structural arrival shock to the onion market

and it causes an increase in both arrivals and prices (retail and wholesale) through the con-

temporaneous correlation in equations (1) and (2). The structural error terms ηW
t and ηR

t

can be seen as the wholesale price-specific shock and the retail price-specific shock, and

these shocks cause a change in price only. Price-specific shocks is possible as we allow for

a highly inelastic demand curve for onions. The structural error terms ηR
t , ηW

t and ηA
t are

white noise, uncorrelated with constant standard deviations σR, σW and σA, respectively.

Given that wholesale prices, retail prices, and arrivals of onions interact with each

other, they can be couched in a reduced form VAR model so that the model can be esti-

mated using OLS. The VAR model takes the form:


PR

t

PW
t

At

 =


A01

A02

A03

+


A11(L) A12(L) A13(L)

A21(L) A22(L) A23(L)

A31(L) A32(L) A33(L)




PR
(t−1)

PW
(t−1)

A
(t−1)

+


ϵ1t

ϵ2t

ϵ3t

 (4)

which allow the expressions Aij(L) to be polynomials in the lag operator L, and ϵkt (k = 1,

2, 3) are the reduced form regression errors which may be correlated. The nature of the

VAR-X system is such that the variables PR
t , PW

t , At are jointly determined. The relation-

ship between the structural form and reduced form errors can be set out as:


1 −β −ρ

0 1 −ζ

0 0 1




ϵ1t

ϵ2t

ϵ3t

 =


ηR

t

ηW
t

ηA
t

 (5)

The upper triangular matrix in (5) shows a Cholesky decomposition of the reduced form

errors
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3.2 Vector Autoregression with Exogenous Variable Model

Onions, being a storable commodity, exhibit price dynamics that are not solely influenced

by the quantity of onion arrivals available for release from storage to prevent stock-outs.

The central focus of this paper is to investigate the impact of rainfall anomalies, treated as

exogenous, on onion arrivals, as well as on wholesale and retail prices.

To achieve this empirical investigation, we adopt the VAR-X framework, which al-

lows us to analyze the relationships between onion arrivals, wholesale and retail prices,

and rainfall anomalies. Within this framework, we treat rainfall deviations (the dispar-

ity between actual and normal rainfall levels) as exogenous variables denoted as X. This

approach ensures that there is no feedback from the endogenous variables to rainfall de-

viations, enabling us to isolate the external influence of rainfall anomalies on our model’s

variables.

Given the challenges associated with forecasting from unrestricted VAR models, which

can often suffer from over-parameterization, an alternative approach has emerged to en-

hance forecasting accuracy. This approach involves the addition of a vector of exogenous

variables into the VAR system. These VAR-X models have gained prominence in the field

of economics, as evidenced by notable studies such as those conducted by Cushman and

Zha (1997) and Eckstein and Tsiddon (2004).

Accordingly, we set out our VAR-X model with zt =

[
PR

t PW
t At

]
′ being the vector of

endogenous variables comprising retail prices, wholesale prices and availability of onions.

The vector RT denotes an exogenous vector of rainfall deviations. The VAR-X builds on (4)

to take the following form:


PR

t

PW
t

At

 =


A01

A02

A03

+


A11(L) A12(L) A13(L)

A21(L) A22(L) A23(L)

A31(L) A32(L) A33(L)




PR
(t−1)

PW
(t−1)

A
(t−1)

+


cRRt−1

cW Rt−1

cARt−1

+


ϵ1t

ϵ2t

ϵ3t

 (6)

where the parameters ck (k = R, W, A) measure the influence of lagged rainfall deviations

on the variables in the vector zt. The nature of the VAR-X system is such that the exogenous
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variable RT is allowed to affect all the other three endogenous variables. One can note that

there is no feedback from the endogenous variables to rainfall deviations. The lag length

of the rainfall deviations is chosen according to the Bayesian Information Criterion (BIC)

to provide the best fit to the data.

The three equations of the model are estimated across the entire sample from March

2010 to April 2022. PR
t , PW

t , At. From the parameter estimates obtained using (6) one can

test for Granger causality by placing appropriate restrictions on the Aij(L) polynomials.

For example, one can set up the null hypothesis of Granger non causality that retail prices

do not Granger cause wholesale prices (that is, PR
t ⇏ PW

t+i by placing the restriction H0 :

(A21(L) = 0). Rejecting the null would imply that current retail prices can be used to

make short-term prediction on wholesale prices.

We use the VAR-X to make out of sample forecasts using the exogenous vector of vari-

ables so that we can quantify the effect of the exogenous variables on the system of en-

dogenous variables in the system. We adopt the approach by Eckstein and Tsiddon (2004)

to specify the time path of the rainfall deviation variable. To illustrate their method, we

first start out with a standard VAR model. Consider a simple first order VAR:

zt = A0 + A1zt−1 + et (7)

If the sample size is given by T, then one can obtain 1-step ahead forecasts by using the

conditional expectation operator to get:

ET(zT+1) = A0 + A1zT (8)

Using a recursive approach one can obtain the 2-step ahead forecast as:

ET(zT+2) = A0 + A1[A0 + A1zT] (9)
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In this recursive manner, we can obtain the j-step ahead forecasts as:

ET(zT+j) = A0[I + A1 + A2
1 + ... + Aj−1

1 ] + Aj
1zT (10)

However, given the over-parameterisation problem that we have already mentioned, we

adopt the VAR-X model in the spirit of Eckstein and Tsiddon (2004) and estimate the fol-

lowing VAR-X model of order 1, given by:

zt = A0 + A1zt−1 + cRt−i + et (11)

where c is a 3×1 vector
[

cR cW cA

]
′ of parameters. In this case, the 1-step ahead forecast

is given by:

ET(zT+1) = A0 + A1zT + cRT (12)

and the two-step ahead forecast is given recursively by:

ET(zT+2) = A0 + A1[ET(zT+1 + cRT+1)] (13)

From equation 13 we can see that to forecast zT+2 and beyond it is necessary to know the

magnitude of the rainfall deviation variable over the forecast period. We follow Eckstein

and Tsiddon (2004) by assuming that there is no rainfall deviation from March 2022 on-

wards so that all values of Rj = 0 for j > March 2022 and generate the forecasts over a

26-month period up to April 2024. We then take the average rainfall deviation over the

last 26 months of the sample period and set this period average to be the values of Rj for

j > March 2022 over the forecast period. The forecasts over a 26-month period up to April

2024 are generated. Once we have the out of sample forecasts we calculate the average of

each variable forecast of PR
t , PW

t , At to compare what values these variables would take

with no rainfall deviation and with recent rainfall deviation. This procedure would allow
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us to measure and compare the impact of rainfall deviation on the prices and availability

of onions.

Finally, we carry out innovation accounting to obtain the impulse response analysis.

We conduct an impulse response function to analyse the behaviour of the PR
t , PW

t , At vari-

ables in response to shocks to each of these variables. To this end, we obtain the vector

moving average (VMA) from the VAR-X given by (5) as follows:


PR

t

PW
t

At

 =


P̄R

P̄W

Ā

+
m

∑
i=0


ψ11(i) ψ12(i) ψ13(i)

ψ21(i) ψ22(i) ψ23(i)

ψ31(i) ψ32(i) ψ33(i)




ηR
t−i

ηW
t−i

ηA
t−i

+
m

∑
i=0


ϕ11(i) ϕ12(i) ϕ13(i)

ϕ21(i) ϕ22(i) ϕ23(i)

ϕ31(i) ϕ32(i) ϕ33(i)




Rt−1−i

Rt−1−i

Rt−1−i


(14)

or, more compactly as:

zt = z̄ +
m

∑
i=0

ψiηt−i +
m

∑
i=0

ϕiRt−1−i (15)

with zt =

[
PR

t PW
t At

]
′ the coefficients of ψi can be used to generate the effects of ηRt,

ηWt and ηAt shocks on the PR
t , PW

t , At variables. The impulse response function traces out

the ψi coefficients against a set time horizon would allow us to visually trace out the time

path of PR
t , PW

t , At variables in response to shocks in ηRt, ηWt and ηAt. Further, we can

use the impulse response function to traces out the response of PR
t , PW

t , At variables in

response to shocks in rainfall deviation given by the ϕi coefficients to a shock in Rt−1−i.

4 Empirical Results

In this section, we present our empirical estimations. To prepare for the VAR-X estimation,

we conduct unit root tests on the variables, both with and without the inclusion of a linear

deterministic trend. It is widely recognized that these tests may suffer from low statistical
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power when additional deterministic terms are present. In addressing this issue of low

power, we employ more powerful testing procedures, including those proposed by Elliott

et al. (1996). These procedures include the GLS de-trended version of the standard Aug-

mented Dickey-Fuller (ADF) test and the point optimal procedure. The results of these

tests are presented in Table 2 below.

TABLE 2: Unit root test results

Panel A Augmented Dickey-Fuller (ADF test)

Delhi Mumbai Kolkata Chennai
With Trend No Trend With Trend No Trend With Trend No Trend With Trend No Trend

PR
t −5.64(1)a −4.96(1)a −4.83(1)a −4.43(1)a −5.79(1)a −5.01(1)a −5.42(1)a −4.93(1)a

PW
t −5.35(1)a −5.03(1)a −5.30(1)a −5.12(1)a −5.82(1)a −4.97(1)a −5.33(1)a −5.03(1)a

At −9.18(0)a −7.47(0)a −5.76(0)a −5.65(0)a −6.34(0)a −4.51(0)a −10.9(0)a −2.48(5)c

RDt −10.24(0)a

Panel B Elliott, Rothenberg and Stock DF-GLS (ERS test)

Delhi Mumbai Kolkata Chennai
With Trend No Trend With Trend No Trend With Trend No Trend With Trend No Trend

PR
t −5.64(1)a −3.79(1)a −4.68(1)a −2.99(1)a −5.55(1)a −3.11(1)a −5.39(1)a −3.76(1)a

PW
t −5.34(1)a −4.04(1)a −5.20(1)a −3.96(1)a −5.81(1)a −3.62(1)a −5.26(1)a −3.87(1)a

At −9.18(0)a −2.08(0)a −5.63(0)a −4.54(0)a −6.35(0)a −1.33(0)a −10.9(0)a −2.45(5)b

RDt −8.55(0)a

Panel C Elliott, Rothenberg and Stock Point Optimal (PT tests)

Delhi Mumbai Kolkata Chennai
With Trend No Trend With Trend No Trend With Trend No Trend With Trend No Trend

PR
t 1.53(1)a 1.01(1)a 2.23(1)a 1.59(1)a 1.70(1)a 1.65(1)a 1.72(1)a 1.00(1)a

PW
t 1.69(1)a 0.81(1)a 1.83(1)a 0.85(1)a 1.49(1)a 1.13(1)a 1.78(1)a 0.94(1)a

At 1.37(0)a 0.62(0)a 2.19(0)a 0.93(0)a 1.83(0)a 2.18(0)a 1.26(0)a 3.92(0)c

RDt 0.45(0)a

Notes: numbers enclosed in parentheses signify the lag length selected through the Bayesian Infor-
mation Criterion (BIC). The superscripts ’a,’ ’b,’ and ’c’ indicate the rejection of the null hypothesis
at the 1%, 5%, and 10% significance levels, respectively. The variable RDt represents rainfall de-
viation, derived as the discrepancy between actual rainfall and the normative rainfall levels in the
primary onion-producing states. Additionally, in the equations, PR

t signifies retail prices, PW
t stands

for wholesale prices, and At denotes onion availability.

For all the variables considered, we find that the estimated statistics are less than the

critical values implying that we reject the null hypothesis of a unit root and thereby con-

clude the variables are stationary I(0) variables.4 The lag lengths, selected according to the

BIC, are in parentheses. Given that the variables are stationary I(0), we conclude that any

shocks to onion prices are transitory in nature.5 Therefore, even though the prices may

4Based on the plots in Figures 1 and 2, we also consider the possibility of unit root tests allowing for non-
stationary volatility as well as seasonal unit roots. These are carried out as robustness tests to clarify there is no
unit root at seasonal frequencies nor with non-stationary volatility. The results based on the popular seasonal
unit root test due to Hylleberg et al. (1990) and the unit root test with nonstationary volatility (Smeekes and
Taylor, 2012) are shown in tables A1 and A2 in the Appendix.

5The VAR-X model is stable with stationary I(0) variables as shown by the plot of eigenvalues of character-
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be punctuated by occasional spikes, the shocks are short-lived, implying that government

intervention prevents shocks being long-lived. We conduct Granger casuality tests using

the parameter estimates of the VAR-X model that we propose in (6) for the four individual

cities.6 The lag lengths are chosen according to the BIC. Placing appopriate restrictions on

the parameter estimates (as described in the earlier section), we test the null hypothesis

of Granger non-causality between the endogenous variables included in the VAR-X, and

report the estimated F-statistics along with their associated probability values in square

brackets in Table 3 below.

TABLE 3: Granger causality test results from VAR-X model

Granger causality test results from VAR-X model

Delhi Mumbai Kolkata Chennai
PW

t ⇏ PR
t+i 7.605 [0.000]a 12.908 [0.000]a 11.537 [0.001]a 1.886 [0.171]

At ⇏ PR
t+i 0.449 [0.638] 0.782 [0.377] 2.989 [0.086]c 4.241 [0.041]b

PR
t ⇏ PW

t+i 0.280 [0.756] 4.648 [0.032]b 5.949 [0.016]b 0.272 [0.602]
At ⇏ PW

t+i 0.354 [0.702] 3.492 [0.063]c 3.634 [0.058]c 3.278 [0.072]c

PR
t ⇏ At+i 1.056 [0.351] 0.374 [0.541] 3.341 [0.069]c 0.061 [0.805]

PW
t ⇏ At+i 0.363 [0.696] 0.884 [0.348] 4.269 [0.040]b 0.043 [0.834]

Notes: Numbers in square brackets denote the probability values. The null
hypothesis is Granger non-causality, e.g., PR

t ⇏ PW
t denotes retail price does

not Granger-cause wholesale process. The superscripts a , b and c denotes
rejection of the null hypothesis at the 1%, 5% and 10% significance levels re-
spectively.

The results exhibit significant variability across all the cities, as indicated by the p-

values enclosed in square brackets. In the case of Delhi, the only discernible causal rela-

tionship identified is from wholesale prices to retail prices. In the case of Mumbai, we de-

tect feedback effects, indicating bidirectional causality between retail and wholesale prices.

Conversely, for Chennai, our findings suggest that arrivals play a causal role in influenc-

ing both retail and wholesale prices. In stark contrast, Kolkata exhibits a complex web of

istic polynomial in unit circle given in Figure A2 in the Appendix.
6The parameter estimates of the VAR-X model are given in Table A3 in the Appendix. The results show the

significance of the exogenous variable. Being rainfall deviation, in each of the VAR models for the individual
cities. We also report the tests for serial correlation in Table A4 in the Appendix, by using the Edgeworth
expansion corrected Likelihood ratio test (LRE) and the Rao F-statistic. The results show the VAR-X model
passes the diagnostic tests.
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causality, with all variables demonstrating causal relationships with each other. Bidirec-

tional causality exists between wholesale and retail prices, as well as between arrivals and

both retail and wholesale prices.

Given the expectation that retail prices carry a mark-up over wholesale prices, it’s un-

surprising that wholesale prices influence retail prices, with Chennai being the sole ex-

ception. In the case of Mumbai and Kolkata, we identify bidirectional causality with re-

tail prices influencing wholesale prices. The observation that wholesale prices lead retail

prices in these two cities implies a rapid incorporation of market signals from retail points.

This phenomenon may be attributed, in part, to institutional reforms that have fostered

private sector participation in agricultural marketing, reducing the influence of brokers

and barriers in the prevailing marketing system. Initiatives such as direct marketing of

agricultural produce, contract farming, e-trading, and infrastructure development by the

private sector have likely contributed to this trend.

The National Agricultural Market, an all-India electronic trading portal (eNAM) launched

in April 2016, has played a pivotal role in facilitating the transmission of price signals

swiftly across markets. This has reduced information asymmetry between buyers and

sellers, enabling real-time price discovery based on actual demand and supply. More-

over, eNAM has the potential to decrease transaction costs by enhancing farmers’ access

to markets through warehouse-based sales, eliminating the need to transport produce to

traditional "mandis."

The variations in the causality results across different markets may stem from dispar-

ities in the extent of reforms, progress in the adoption of e-marketing systems, and varia-

tions in infrastructural facilities, including storage capacity. Notably, Chennai and Kolkata

stand out as the two cities where we observe arrivals exerting a predictive influence on

both retail and wholesale prices. This phenomenon may be explained by differences in

storage facilities and transportation costs for onions between Chennai and Kolkata on one

hand, and Mumbai and Delhi on the other. The rapid transmission of information be-

tween arrivals and prices in Kolkata could provide insights into the bidirectional causality

21



observed in this market.

The estimation of a VAR-X allows us to proceed towards analysing how rainfall anoma-

lies affect retail and wholesale prices of onions as well as the arrivals. We first estimate the

VAR-X model and then estimate the impact over the forecast horizon by conducting a 26-

month out of sample period.

In accordance with the methodology outlined in the previous section, we adhere to the

approach proposed by Eckstein and Tsiddon (2004). Specifically, we assume that there are

no rainfall deviations from March 2022 onwards, which implies that all values of Rj equal

zero for j > March 2022. Subsequently, we generate forecasts using the VAR-X model for

both retail and wholesale onion prices, as well as onion arrivals, spanning the 26-month

period leading up to April 2024.

To summarize the outcomes, we calculate the average of each forecasted variable, de-

noted as f1_PR
t , f1_PW

t , and f1_At, over the 26-month duration. These results are presented

in Table 4 under the sub-column labeled ’No RD,’ signifying ’no rainfall deviation.’

TABLE 4: Forecast from the VAR-X Model

Delhi Mumbai Kolkata Chennai

No RD With RD No RD With RD No RD With RD No RD With RD
f_PR

t 3.29 3.37 3.29 3.43 3.30 3.37 3.09 3.23
% (-/+) +8.31 +15.12 +7.23 +15.02

f_PW
t 2.52 2.60 2.66 2.82 2.98 3.07 2.72 2.88

% (-/+) +8.37 +17.35 +9.45 +17.32

f_At 10.01 9.98 10.09 10.07 8.28 8.28 9.42 9.35
% (-/+) -3.04 -1.98 0 -6.76
Notes: The notations f_PR

t , f_PW
t , and f_At represent the mean values computed over the out-

of-sample forecast period for retail prices, wholesale prices, and arrivals, respectively. The
notation % (– / +) indicates the percentage decrease or increase, respectively, when consid-
ering the scenario without any rainfall anomalies and when assuming the average rainfall
anomalies observed over the past 26 months.

Next, we compute the average rainfall deviation observed over the last 26 months of

the sample period and assign these average values to Rj for j > March 2022 throughout

the forecast period. Similarly to our previous approach, we estimate forecasts over a 26-

month horizon, extending up to April 2024, for each variable, denoted as f 2P
R
t , f 2P

W
t , and
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f 2At. Subsequently, we calculate the mean values of these forecasts over the 26-month

timeframe. These results are presented in Table 4, under the sub-column labeled ’With

RD,’ signifying ’with rainfall deviation.’

When comparing the forecasted prices at both the retail and wholesale levels, we ob-

serve that, for each city, prices in scenarios with no rainfall deviation are lower on average

than those with average rainfall deviations. This implies that rainfall deviations exert up-

ward pressure on prices. Additionally, we find that rainfall anomalies lead to a reduction in

available onion supplies. As our price data is in logarithmic form, we calculate the average

percentage increase in prices for all cities attributable to rainfall deviations, in comparison

to a counterfactual scenario without any rainfall deviation.

Our findings indicate that when the average of rainfall anomalies over the last 26

months is incorporated into the VAR-X model, the forecasted retail and wholesale prices

increase. The upward pressure on both retail and wholesale prices falls within a range of

8% to 17% for all the cities. Notably, in the cases of Chennai and Mumbai, the price in-

crease for both retail and wholesale prices is nearly identical, approximately ranging from

15% to 17%. Conversely, for Delhi and Kolkata, the increase is relatively lower, at around

7% to 9%, with wholesale price increases slightly exceeding retail price increases.

Furthermore, rainfall anomalies lead to a decrease in arrivals of onions, ranging from

2% to 6%, except for Kolkata, where arrivals remain unaffected. In broad terms, we can

conclude that rainfall anomalies indeed exert upward pressure on both retail and whole-

sale prices, although the extent varies across different cities. This may imply that the re-

trieval of onions from storage, rather than relying solely on production and harvest, is

more readily practiced in Delhi and Kolkata compared to Mumbai and Chennai. The lower

price effects observed in the former two cities suggest that inventory retrievals are likely to

be prompt. It is evident that rainfall deviations have an impact on arrivals, albeit to a lesser

degree. Erratic rainfall can result in poor harvests and consequently a potential decrease

in arrivals. However, this decline in arrivals can be offset by an increase in retrievals from

storage, a phenomenon more apparent in the case of Kolkata.
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To trace out the effects of how retail, wholesale prices and arrivals of onions respond

to rainfall shocks, we conduct an impulse response analysis using the VAR-X framework.

Using the framework given by equation 6 we trace out the response of the PR
t , PW

t , At vari-

ables in response to shocks in rainfall. The response of all the three variables to rainfall

shocks for each of the individual cities, are depicted in Figure 5 below.

FIGURE 5: Impulse Response Analysis of Rainfall Shocks

Notes: The horizontal axis denotes the chosen time horizon; in this case 12 months. The initial period (0)
does not include any response as the rainfall effect is lagged by construction. The remaining 11 months is the
horizon that we examine. The black line is the response function, whereas the associated blue lines are the
90% confidence intervals. The vertical axis measures the impact of the shock on the variables in growth form.
To this end RP, WP, and AR stand for retail price, wholesale price, and arrivals, respectively.

In the Delhi market, a positive rainfall shock initially does not impact retail prices, but

after one month, the price of onions at the retail level begins to rise. This upward trend

continues for two months, reaching a peak before gradually decreasing and becoming in-

significant after six months. Wholesale prices in Delhi follow a similar pattern with no

initial impact, followed by a gradual significant response, peaking after two months and
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then dissipating over five months. Arrivals in Delhi also show no initial impact, but after

two months, a gradual decline becomes noticeable, lasting about five months.

For Mumbai, both retail and wholesale prices experience a relatively sharp increase in

response to rainfall shocks, with the rise occurring within a month. However, the decline

afterward is gradual, particularly in the case of retail prices. Arrivals initially decrease

but recover to their original levels within two months. In Kolkata, the response functions

for retail and wholesale prices resemble those in Mumbai, but they dissipate quickly, ap-

proximately within five months. Arrivals in Kolkata do not exhibit a significant response

to rainfall shocks. In the Chennai market, retail and wholesale prices respond similarly

to those in other cities, with no initial impact, followed by an increase and then a de-

crease. However, the response remains significant even after 11 months. Onion arrivals in

Chennai are sharply affected, with a noticeable decrease in availability following a rainfall

shock. This decrease is short-lived, as arrivals return to their original levels within two

months.

In summary, for all cities, both retail and wholesale prices initially do not respond

to rainfall shocks, but they later experience a sharp increase followed by a gradual de-

crease. The duration for the shock’s impact on prices varies among cities, with Chennai

and Mumbai exhibiting relatively long-lived effects compared to Delhi and Kolkata. Ar-

rivals respond differently to rainfall shocks. Chennai and Mumbai show a clear dip in

arrivals, especially pronounced in Chennai. In contrast, while there is a slight negative ef-

fect on arrivals after about three months for Delhi, there is no significant impact on arrivals

in Kolkata.

We then proceed to compute the responses of retail, wholesale prices, and arrivals of

onions in response to shocks in retail, wholesale prices, and arrivals of onions. The corre-

sponding graphs illustrating these responses are presented in Figure 6 below.
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The impulse responses in Delhi, Chennai, and Mumbai demonstrate minimal to no

reaction in wholesale prices and onion arrivals to shocks in retail prices. In the case of

Kolkata, a positive shock to retail prices induces a slight, lagged, and transitory response

in wholesale prices, while arrivals exhibit a similar but positive response. Across all cities,

retail prices react similarly to shocks in wholesale prices. Initially, the response is positive,

with the impact of the shock diminishing over time. However, arrivals do not display any

significant response to wholesale price shocks, except for Delhi and Kolkata, where it is

mildly negative, lagged, and transitory.

Both retail and wholesale prices respond negatively to arrival shocks upon impact for

all four cities, with this negative effect persisting for Chennai and Mumbai. However,

for Delhi and Kolkata, the negative response becomes insignificant after the first month.

Additionally, we find that in all cities, wholesale prices do not tend to respond to retail

price shocks. Conversely, retail prices significantly respond to wholesale price shocks.7

5 Conclusion

Our study uncover that the effects of shocks on both retail and wholesale onion prices are

transitory. This suggests that government interventions aimed at stabilizing onion prices,

such as adjusting minimum export prices, tend to counteract and mitigate any shocks

to onion prices, making them temporary in nature. India has a history of intervening

in onion pricing, often employing ad-hoc measures, including government purchases at

prices lower than production costs. The Agricultural and Processed Food Products Ex-

port Development Authority (APEDA) determines the minimum export prices of onions,

which typically exceed domestic prices. By manipulating these export prices, the govern-

ment can influence farmers’ decisions on whether to sell domestically or export, ultimately

affecting the domestic supply of onions and, theoretically, stabilizing prices. This inter-

7Further innovation accounting is carried out by conducting the forecast error variance decomposition
analysis (see Table 5A in the Appendix and the associated discussion on possible exogeneity) as well as the
historical decomposition analysis (see Figure 4A in the Appendix and the associated discussion).
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vention helps prevent persistent spikes in onion prices, as supported by our unit root test

results.

The causality of onion prices with arrivals varies among individual cities. We find that

arrivals can have a mitigating effect on onion prices, although the extent of this effect may

differ across cities. For instance, except for Delhi, we observe causality from arrivals to at

least wholesale onion prices, if not retail prices, in the case of Mumbai, Kolkata, and Chen-

nai. These arrivals encompass both harvests (which occur at least twice a year during the

rabi and kharif seasons) and destocking. However, poor storage conditions in India lead to

spoilage and shrinkage of onions. The inclusion of onions under the Essential Commodi-

ties Act (ECA) in 2014 allowed for de-hoarding measures and regular price monitoring.

Limits on onion stocks were imposed in September 2019 for wholesalers and retailers. Ex-

perts argue that revoking the ECA could encourage private investment in storage, reduc-

ing wastage and price variability. Currently, inadequate storage facilities and high rent for

existing cold storage prompt wholesalers to sell a significant portion of their onion arrivals

to retailers, leaving limited quantities for storage. This dynamic explains the causal rela-

tionship between arrivals and prices. The discrepancy between production and storage

growth rates underscores the need to make storage more accessible and affordable.

Onion production predominantly occurs in the northern, western, and southern re-

gions of India. Kolkata’s onion prices are likely influenced by higher transportation costs

compared to other cities like Mumbai, Delhi, and Chennai. Expanding onion cultivation in

states such as Bihar, Odisha, and Assam could help meet the demand in eastern and north-

eastern India. The distance from the production center, coupled with higher variability in

onion arrivals, may contribute to the transmission of price and quantity signals in Kolkata.

Our results carry significant policy implications. In Chennai, Kolkata, and Mumbai

(but not Delhi), arrivals affect wholesale prices. If traders opt to restrict the influx of onions

into the market, prices could rise accordingly. This observation holds true for the cities we

studied, except for Delhi, which has the lowest variability in onion arrivals compared to

the other cities. More consistent arrivals (supply) leave less room for price manipulation
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by traders.

Additionally, we find that prices cause changes in onion arrivals in the case of Kolkata,

indicating that wholesalers adjust their storage and market release decisions based on price

signals. This behavior may be influenced by the lack of sufficient and adequate storage fa-

cilities in other cities and their neighboring areas. Most onion storage facilities in India

are inadequate, leading to various losses, including weight loss, moisture loss, shrink-

age, rot, and sprouting. Our findings suggest that, given Kolkata’s distance from major

onion-producing regions and inadequate storage facilities, wholesalers must swiftly inter-

pret price and arrival signals to make informed decisions. We also observe asymmetric

responses when comparing how retail and wholesale prices react to shocks in each other’s

prices. In all cities, wholesale prices tend not to respond to retail price shocks, while retail

prices significantly respond to wholesale price shocks in all cities except Chennai.

Finally, we find that rainfall anomalies have significant positive effects on onion prices

and negative effects on arrivals. Therefore, providing advance weather information to

farmers can prove invaluable in helping them make informed planting decisions. More-

over, offering crop insurance facilities to farmers, as well as agents along the supply chain,

could protect against price variability, risk, and uncertainty. With climate change lead-

ing to increased rainfall variability, the availability of weather-index-based crop insurance

schemes (WBCIS) can help farmers mitigate the adverse effects of climate change and en-

hance the resilience of their production systems.
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Appendix

A1. Seasonal Unit Root Tests

Hylleberg et al. (1990) (hereafter HEGY) proposed a test for the determination of unit roots

at each of the seasonal frequencies ( π
6 , π

3 , π
2 , 2π

3 , 5π
6 , and π) individually or collectively. To

save space, we only report the individual cases, but the joint results can be made available

on request. The HEGY test can accommodate various deterministic specifications in the

form of seasonal dummies, constants, and trends; we make use of the seasonal dummies

as suggested by Osborn (1990). Moreover, we augmented the HEGY test with lags of the

dependent variable chosen according to the AIC as additional regressors to the principal

equation presented above, in order to mitigate the effect of serial correlation. See Hylleberg

et al. (1990) for details.

The results of the seasonal unit root test are given below in Table A1. In each of the

frequencies, we can see that the test statistic is greater in absolute terms than the com-

puted critical values (approximately 0.73 at all seasonal frequencies, and −2.53 at the π

frequency), and we can therefore reject the null hypothesis of a unit root in each of the

variables (retail and wholesale prices, along with arrivals).
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TABLE A.1: Seasonal unit root tests (M-HEGY)

π
6

π
3

π
2

2π
3

5π
6 π

Delhi PR
t 15.81 19.23 12.17 14.51 17.77 −3.64

Delhi PW
t 17.37 19.87 13.85 17.29 14.06 −4.28

Delhi At 4.39 4.97 6.14 12.26 13.75 −4.03
Mumbai PR

t 17.97 20.27 12.69 15.15 20.29 −3.07
Mumbai PW

t 15.74 20.15 11.32 17.38 22.08 −2.95
Mumbai At 13.77 16.14 22.06 20.27 9.22 −3.84
Kolkata PR

t 16.69 20.67 16.41 11.74 22.05 −4.56
Kolkata PW

t 16.01 19.17 15.63 11.94 15.63 −4.14
Kolkata At 14.05 14.72 13.87 19.84 10.96 −4.50
Chennai PR

t 16.13 22.08 15.98 19.53 19.10 −4.27
Chennai PW

t 17.46 23.49 18.07 18.91 19.86 −4.18
Chennai At 14.15 9.67 15.40 8.59 7.60 −2.36∗

Notes: The 10% significance levels are obtained using linear inter-
polation and are approximately 0.73 at all seasonal frequencies,
and −2.53 at the π frequency. The rejection of the unit root null
for this particular variable at this particular frequency π using
the HEGY test on monthly frequencies appears to be an anomaly
as it is close to the critical value of −2.53 at the 10% significance
level. While for this variable we do not reject the null of no unit
root at this particular frequency π, using the Canova-Hansen test
we cannot reject the null hypothesis of no unit root at this spec-
ified frequency (we can report test statistic 0.34 which is less in
absolute value than 0.35 at 10% and 0.47 at 5% significance levels
respectively).
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A2. Unit root tests allowing for non-stationary volatility

We employ the test proposed by Smeekes and Taylor (2012), which is a bootstrap union

test for unit roots in the presence of non-stationary volatility. This test builds on the pro-

cedure by Harvey et al. (2012) dealing with the uncertainty about the trend and the initial

condition. Smeekes and Taylor (2012) extend the work of Harvey et al. (2012) by allowing

for the possible presence of nonstationary volatility. This is done by considering union

tests that are robust to nonstationary volatility, trend uncertainty, and uncertainty about

the initial condition. To this end, they consider two bootstrap union tests, ‘unit root A

type’ test, denoted UR4A and ‘unit root B type’ test, denoted UR4B; the former test, that is

UR4A does not include a deterministic trend in the test, while the latter, that is, UR4B does

include a trend in the bootstrap data generating process. The results of this test are shown

in Table A2 below. In each of the variables we can see that the estimated UR-statistic is

greater than the bootstrapped critical values and therefore we can reject the unit root null

allowing for nonstationary volatility.

TABLE A.2: Unit root tests allowing for non-stationary volatil-
ity.

UR-statistic Bootstrapped critical value

URA [p-value] URB [p-value]

Delhi PR
t –4.138 –2.011 [0.00] –2.011 [0.00]

Delhi PW
t –4.772 –2.092 [0.00] –2.091 [0.00]

Delhi At –6.695 –2.022 [0.00] –2.063 [0.00]
Mumbai PR

t –3.842 –2.103 [0.00] –2.103 [0.00]
Mumbai PW

t –4.871 –2.056 [0.00] –2.060 [0.00]
Mumbai At –3.739 –2.148 [0.00] –2.145 [0.00]
Kolkata PR

t –3.882 –2.066 [0.00] –2.055 [0.00]
Kolkata PW

t –4.391 –2.096 [0.00] –2.095 [0.00]
Kolkata At –6.604 –2.305 [0.00] –2.305 [0.00]
Chennai PR

t –4.326 –2.069 [0.00] –2.058 [0.00]
Chennai PW

t –4.328 –2.025 [0.00] –2.025 [0.00]
Chennai At –10.40 –2.076 [0.00] –2.076 [0.00]

Notes: Numbers in square brackets denote p – values
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TABLE A.3: Estimates of the VAR-X Model

Delhi Mumbai Kolkata Chennai

PR
t PW

t At PR
t PW

t At PR
t PW

t At PR
t

PR
t−1 0.50a –0.37b 0.141 0.55a –0.32b –0.06 0.22 –0.47 0.76 0.56a

PR
t−2 0.14 0.21 0.18

PW
t−1 0.29a 1.12a 0.03 0.25a 1.05a 0.07 0.85a 1.61a –0.74 0.247

PW
t−2 –0.45 –0.55 –0.17

At−1 0.07 0.05 0.39a –0.01 –0.13 0.64a –0.01 –0.003 0.37a –0.11b

At−2 0.15a 0.19a 0.03
RDt−i 0.05a 0.07a –0.03b 0.06a 0.08a –0.02 0.04a 0.06a 0.00 0.03c

Notes: The superscripts a, b, and c denote rejection of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively. RD denotes the rainfall deviation; the associated lag i is 5 for Delhi and Mumbai and
Kolkata, and 2 for Chennai.
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A3. Diagnostic Serial Correlation

To test for serial correlation in the VAR-X model, we make use of the Edgeworth expansion

corrected likelihood ratio statistic as well as the Rao F-test version of the LM statistic. In

Table A.4 below, we find that in all cases when estimating the VAR-X model for the four

cities, Delhi, Mumbai, Kolkata, and Chennai, the null hypothesis of no serial correlation

cannot be rejected.

TABLE A.4: Diagnostics of the VAR-X Model

LM test for serial correlation

LRE-stat p-value Rao F-stat p-value

Kolkata 11.17 0.26 1.25 0.26
Delhi 11.65 0.23 1.30 0.23
Mumbai 2.74 0.97 0.303 0.97
Chennai 13.41 0.14 1.51 0.14

Notes: We do not conduct Ljung-Box Q tests as the p-values may
not be reliable with exogenous variables.
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A4. Variance Error Decomposition Analysis

Using the VAR model in (4) and setting zt = [(PR
t , PW

t , At)′] to be the vector of endoge-

nous variables comprising retail prices, wholesale prices, and availability of onions, we

can obtain the j-step ahead forecast as shown in (10):

ET(zT+j) = A0[I + A1 + A2
1 + · · ·+ A(j−1)

1 ] + Aj
1zT

We can work out the associated forecast error (given by et) as:

e(t+j) = A1e(t+j−1) + A2
1e(t+j−2) + · · ·+ A(j−1)

1 e(t+1)

As with the impulse response analysis, it is possible to write these forecast errors in

terms of the structural errors ηR
t , ηW

t , and ηA
t . The forecast error decomposition informs

us of the proportion of the movements in a data series due to its own shocks versus the

shocks to other variables. For example, we can obtain the proportion of movements in the

retail price series due to shocks in ηR
t versus the shocks to ηW

t and ηA
t .

If ηR
t shocks explain none of the forecast error variance of PW

t at a sufficiently long

horizon, then we can say that the PW
t series is exogenous. In this sort of situation, the PW

t

series evolves independently of the ηR
t shock and the PR

t data series. At the other extreme,

if ηR
t shocks explain all of the forecast error variance of PW

t at a sufficiently long horizon,

then we can say that the PW
t series is endogenous.

However, as we see from the results in Table 5A below, we find that for PR
t and At

almost all of its forecast error variance is explained at short horizons and smaller propor-

tions at longer horizons. For the PW
t series, however, more of the forecast error variance

is explained at longer horizons for Delhi and Mumbai, whereas in Kolkata and Chennai

the proportion explained is lower and gradually increasing. However, the results show no

signs of being entirely exogenous nor endogenous in any of the cities, validating our VAR

model setup.
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TABLE A.5: Forecast Error Variance Decomposition Analysis for Delhi

(a) Forecast Error Variance Decomposition Analysis for Delhi

Horizon On Retail On Wholesale On Arrivals

PR
t PW

t At PR
t PW

t At PR
t PW

t At

1 100.00 0.000 0.000 78.657 21.342 0.000 1.327 4.811 93.861
2 90.988 9.006 0.005 69.048 30.908 0.042 3.231 7.1696 89.598
3 78.302 21.370 0.327 60.151 39.729 0.118 3.196 9.342 87.461
4 70.979 28.754 0.266 57.176 42.600 0.222 3.465 13.891 82.643
5 66.201 33.272 0.525 52.718 47.037 0.243 3.270 21.753 74.976
6 64.903 34.346 0.750 50.345 49.402 0.251 3.276 22.464 74.259
7 64.736 34.487 0.775 50.152 49.177 0.669 4.717 21.902 73.380
8 64.918 34.304 0.776 50.134 48.428 1.436 5.975 21.421 72.603
9 64.876 34.188 0.934 49.820 47.393 2.785 9.108 24.728 66.163
10 64.743 34.262 0.994 50.132 46.812 3.054 8.909 28.127 62.962
11 64.751 34.176 1.071 50.205 46.569 3.2246 8.830 28.314 62.855
12 64.427 34.139 1.433 49.660 46.373 3.9658 9.969 27.181 62.849

(b) Forecast Error Variance Decomposition Analysis for Mumbai

Horizon On Retail On Wholesale On Arrivals

PR
t PW

t At PR
t PW

t At PR
t PW

t At

1 100.00 0.000 0.000 75.170 24.829 0.000 2.356 0.300 97.343
2 98.118 1.877 0.004 70.326 29.306 0.367 1.985 0.236 97.778
3 94.994 4.938 0.067 66.144 32.824 1.031 1.806 0.407 97.786
4 91.529 8.225 0.244 62.714 35.459 1.825 1.740 0.703 97.556
5 88.245 11.218 0.536 60.025 37.344 2.629 1.724 1.020 97.255
6 85.399 13.693 0.906 58.007 38.628 3.363 1.723 1.293 96.983
7 83.086 15.604 1.309 56.561 39.454 3.984 1.723 1.496 96.780
8 81.304 16.995 1.700 55.577 39.948 4.474 1.721 1.631 96.646
9 79.997 17.953 2.048 54.943 40.218 4.838 1.720 1.713 96.566
10 79.084 18.577 2.337 54.561 40.346 5.092 1.720 1.757 96.522
11 78.477 18.960 2.561 54.348 40.392 5.259 1.722 1.778 96.499
12 78.095 19.178 2.725 54.241 40.397 5.361 1.725 1.786 96.487

(c) Forecast Error Variance Decomposition Analysis for Kolkata

Horizon On Retail On Wholesale On Arrivals

PR
t PW

t At PR
t PW

t At PR
t PW

t At

1 100.00 0.000 0.000 64.467 35.532 0.000 1.392 0.081 98.526
2 96.666 3.208 0.124 70.468 29.162 0.369 2.029 3.733 94.237
3 93.784 4.579 1.636 71.960 27.503 0.535 3.332 6.780 89.887
4 90.627 4.456 4.915 71.737 26.158 2.104 4.496 8.707 86.795
5 87.514 4.078 8.406 70.754 25.088 4.156 5.125 9.712 85.162
6 84.739 4.105 11.154 69.636 24.532 5.830 5.340 10.12 84.536
7 82.572 4.607 12.820 68.743 24.446 6.810 5.371 10.245 84.382
8 81.092 5.317 13.590 68.174 24.606 7.218 5.369 10.267 84.363
9 80.195 5.960 13.843 67.866 24.810 7.322 5.383 10.265 84.350
10 79.706 6.410 13.883 67.716 24.960 7.322 5.409 10.263 84.327
11 79.464 6.667 13.868 67.649 25.040 7.309 5.432 10.262 84.305
12 79.356 6.780 13.853 67.621 25.073 7.304 5.446 10.261 84.292

(d) Forecast Error Variance Decomposition Analysis for Chennai

Horizon On Retail On Wholesale On Arrivals

PR
t PW

t At PR
t PW

t At PR
t PW

t At

1 100.00 0.000 0.000 90.288 9.711 0.000 1.494 2.878 95.626
2 98.479 0.619 0.901 90.940 8.365 0.694 1.596 2.874 95.529
3 98.294 0.837 0.868 91.802 7.604 0.592 1.578 2.835 95.585
4 98.308 0.874 0.817 92.279 7.186 0.533 1.589 2.837 95.572
5 98.361 0.858 0.779 92.511 6.980 0.507 1.633 2.835 95.531
6 98.392 0.843 0.764 92.602 6.896 0.501 1.676 2.834 95.488
7 98.402 0.838 0.759 92.627 6.870 0.502 1.709 2.833 95.456
8 98.400 0.840 0.758 92.630 6.865 0.504 1.728 2.833 95.438
9 98.397 0.844 0.758 92.628 6.865 0.505 1.738 2.833 95.428
10 98.394 0.847 0.758 92.626 6.867 0.506 1.742 2.832 95.424
11 98.392 0.848 0.758 92.625 6.867 0.506 1.743 2.832 95.423
12 98.391 0.849 0.758 92.625 6.868 0.506 1.744 2.832 95.423
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A5. Variance Profile Plot

Since onion prices appear to be volatile, to establish the presence of non-stationary volatil-

ity we follow the procedure by Cavaliere and Taylor (2007). They construct a variance

profile η̂s which is determined by:

η̂s =
∑⌊sT⌋

t=1 v̂2
t + (sT − ⌊sT⌋)v̂2

⌊sT⌋+1

∑T
t=1 v̂2

t

where v̂t is the estimated residual of the error term of the price/availability trend on

its own lag (we regress the price/availability of onions on a constant and a linear trend).

The variance profile measures unconditional volatility often referred to as nonstationary

volatility. The method produces a graph to determine whether the variance is constant or

not. The graphs for each variable are shown in Figure A.1 below.
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FIGURE A.1: Variance Profile of logged prices (retail and wholesale) and arrivals

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)
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A6. Roots of the characteristic polynomial in the complex unit cir-

cle

We can conclude about the order of integration of the variables in the vector xt = [PR
t , PW

t , At]′

by showing that the VAR model in Eq. (4) is stable. Writing out the VAR model, we have:

xt = A1xt−1 + A2xt−2 + A3xt−3 + · · ·+ Apxt−p + ϵt

Using the lag operator, the above process can be written as:

(I − A1L − A2L2 − · · · − ApLp)xt = ϵt

The VAR model is stable if |A(z)| = det(I − A1z − A2z2 − · · · − Apzp) ̸= 0; |z| < 1.

Alternatively, xt is stable if all the roots of the determinantal polynomial lie outside

the unit root circle, in which case xt ∼ I(0). Since we are using lag operators, the inverse

of the characteristic roots will mean that the roots must lie inside the complex unit root

circle for stability. Below, in Figure A.2, we plot the eigenvalues (characteristic roots) of

the determinantal polynomial on the complex unit root circle. As we can see, they all lie

within the circle, implying that the variables are indeed stationary I(0) processes.
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FIGURE A.2: Plot of eigenvalues of characteristic polynomial in the unit circle for different
cities.

(A) Delhi (B) Mumbai

(C) Chennai (D) Kolkata
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A7. Historical Decompositions

In Figure A.3, panels A to D, we trace out the cumulative contributions to each structural

shock to the retail, wholesale price and availability of onions in Delhi, Mumbai, Kolkata

and Chennai respectively. Each of the nine figures in each panel shows how retail prices,

wholesale prices, and availabilities of onions respond to each of the structural shocks in

the variables. In each case, the large fluctuations in both the retail and wholesale prices are

mainly driven by all three shocks with relatively more effect on wholesale prices. In the

case of arrivals, the retail and wholesale price shock effects are lower in comparison to the

shock in arrivals of onions.
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FIGURE A.3: Historical Decomposition by City

(A) Delhi

(A) Mumbai
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(A) Kolkata

(A) Chennai
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