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Abstract 

The cultivation of agroforestry systems is regarded as an effective strategy to synergistically 

mitigate and adapt to climate change in the face of an increased occurrence of regional extreme 

weather events. This study addresses the question if and under what conditions farmers are 

likely to adopt agroforestry and wood-based land-use systems in response to regional weather 

extremes. We conducted a discrete choice experiment to elicit farmers preferences for - and 

willingness to adopt - agroforestry and wood-based land use systems and combined the results 

with geo-spatial weather data. Assuming adaptive weather expectations, we regionally simulate 

land users' dynamic response to extreme weather years in terms of adoption probabilities. We 

find that farmers in our case study region in Southeast Germany have a negative preference for 

alley cropping and short rotation coppice compared to an exclusively crop-based land use 

system. However, the results from the simulation of a 2018-like extreme weather year show 

that alley-cropping systems (i.e. agroforestry) might have a very high probability of being 

adopted in the medium to long-run under different scenarios, thus enhancing farmers' resilience 

to climate change. 

Keywords Climate change, extreme weather, land use, agroforestry, discrete choice  

                        experiment 
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1 Introduction

The latest assessment report of the Intergovernmental Panel on Climate Change (IPCC)

reiterates the fact that climate change poses exceptional challenges to various sectors on

a global scale (IPCC, 2021). The World Economic Forum (WEF), in its 2020 Global

Risks Report, listed climate-related concerns as the top-five long-term risks for the first

time (WEF, 2019). Beside affecting annual mean temperatures and precipitation, climate

change also increases the number of occurrences of regional extreme weather events such

as droughts, heat waves, heavy rain and floods (IPCC, 2021; Lüttger and Feike, 2018;

Mann et al., 2018; Westra et al., 2014). In this context, agriculture is often seen as one of

the most susceptible sectors to such changes (IPCC, 2007), which negatively affect, e.g.,

crop yields (e.g. Lesk, Rowhani, and Ramankutty, 2016; Schlenker and Roberts, 2009;

Haqiqi et al., 2021), total factor productivity (e.g. Chambers, Pieralli, and Sheng, 2020;

Chambers and Pieralli, 2020; Stetter, Mennig, and Sauer, 2021), and ultimately farm

income (e.g. Kawasaki and Uchida, 2016; Dell, Jones, and Olken, 2014; Dalhaus et al.,

2020). Prime examples for extreme weather years that heavily impacted agriculture are

the 2003 European heat wave, the 2018 European drought and heat wave, or the 2010–

2013 Southern United States and Mexico drought. However, agriculture is also regarded

as one of the most important anthropogenic contributors to climate change (Lynch et al.,

2021). All in all, farmers need effective adaptation and mitigation strategies to tackle the

challenges of climate change.

One major channel through which agriculture can actively tackle climate change is

land use (Pielke, 2005). A promising pathway in this direction could be the adoption

of agroforestry and wood-based land-use systems, which are recognized to play a key

role in approaching adaptation and mitigation synergistically (Verchot et al., 2007; Car-

dinael et al., 2021; Van Noordwijk, Hoang, and Neufeldt, 2011; Duguma, Minang, and

Van Noordwijk, 2014; Van Noordwijk et al., 2014). Agroforestry systems are defined as

a land-use systems where woody perennials are deliberately integrated with agricultural

crops and/or livestock on a piece of land, either in some sort of spatial arrangement

or temporal sequence (Nair, 1985; Leakey, 2017; Cardinael et al., 2021). Such systems
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mitigate climate change through their carbon sequestration potential aboveground, be-

lowground and in the soil (e.g. Albrecht and Kandji, 2003; Schroeder, 1993; Oelbermann,

Paul Voroney, and Gordon, 2004; Cardinael et al., 2017). There are also indirect miti-

gation effects in that the planting of wood on agricultural land might effectively reduce

deforestation (Schroeder, 1993; Verchot et al., 2007) and help replace fossil fuels by fu-

elwood (Kuersten and Burschel, 1993). At the same time, the positive regulation effects

on hydrological cycles, soil, and the microclimate lead to more climate change resilient

agricultural production (Lasco et al., 2014). Furthermore, agroforestry and its provision

of multiple ecosystem services (Brown et al., 2018; Wolz et al., 2018) is also seen as a

main component in the realm of ecosystem-based climate change adaptation (Pramova

et al., 2012; Hernández-Morcillo et al., 2018).

Provided the various merits of agroforestry systems, there is still huge potential for

the introduction and expansion of agroforestry areas around the globe (Van Noordwijk

et al., 2014). This might be of particular importance in the face of increased occurrence of

regional extreme weather events (Duguma, Minang, and Van Noordwijk, 2014; van Noord-

wijk et al., 2021). This paper addresses the question if and under what conditions farmers

are likely to adopt agroforestry and wood-based land-use systems in response to regional

weather extremes. To this end, we conducted a discrete choice experiment to elicit farm-

ers preferences for and willingness to adopt alley cropping and short rotation coppice

and combined the results with geo-spatial weather data. Assuming adaptive weather

expectations, we locally simulate their dynamic land-use response to extreme weather

years in terms of adoption probabilities based on the approach of Ramsey, Bergtold, and

Heier Stamm (2020). We then discuss these land-use responses in a wider climate change

resilience context (see OECD, 2020; Meuwissen et al., 2019).

We find that farmers in our case study region in Southeast Germany have a negative

preference/WTA for alley cropping and short rotation coppice compared to an exclusively

crop-based land use system. However, the results from the simulation of extreme weather

under different scenarios show that alley-cropping systems (agroforestry) might have a

very high probability of being adopted in the medium to long-run and thus strengthening
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farmers’ resilience to extreme weather.

The elicitation of farmers’ preferences for agroforestry and woody perennials have been

the subject of multiple studies. E.g., Gillich et al. (2019) and Pröbstl-Haider et al. (2016)

analyze farmers’ preferences for short rotation coppice in Germany and Austria using

discrete choice experiments. Other studies focus on the adoption of agroforestry systems,

mostly in the context of the Global South (Bayard, Jolly, and Shannon, 2007; Amusa

and Simonyan, 2018; Beyene et al., 2019; Schaafsma, Ferrini, and Turner, 2019; McGinty,

Swisher, and Alavalapati, 2008; Dhakal, Cockfield, and Maraseni, 2015). None of these

studies, however, examine the effects of climate and (extreme) weather in this context.

Furthermore, multiple authors have simulated the (economic) potential for agroforestry

cultivation under different circumstances (e.g Paul, Weber, and Knoke, 2017; Frey et al.,

2013). Lasch et al. (2010) and Gomes et al. (2020) project the cultivation potential

for SRC in Eastern Germany and coffee-agroforestry in Brazil taking account of climate

change scenarios until 2050. The problem with such scenarios is that they are usually on

a global scale and likely do not represent local farmers actual and perceived experiences

with extreme weather and climate change, which is why they are not well-suited for

farm-level based simulations (Morton et al., 2015; Ramsey, Bergtold, and Heier Stamm,

2020). Overall, studies on the effect of weather shocks on land-use change are scarce

(Girard, Delacote, and Leblois, 2021). To fill in this gap, Ramsey, Bergtold, and Heier

Stamm (2020) develop a novel framework to simulate how farmers dynamically adjust

their cropping decisions in response to specific weather patterns.

This study contributes to the literature in several ways. Firstly, we quantify the

link between adverse weather and farmers’ preferences for agroforestry and short ro-

tation coppice accounting for short- to long-run adaptation responses. While many of

the aforementioned studies are concerned with why integrating woody perennials into

farms’ cultivation plan might be useful in terms of mitigation and adaptation, they usu-

ally ignore whether and how farmers respond to weather patterns. Establishing this

link is particularly important in light of the increased occurrence of extreme weather

events due to climate change. Furthermore, by combining a discrete choice experiment,
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geo-spatial weather information and the simulation framework of Ramsey, Bergtold, and

Heier Stamm (2020), we are able to provide novel insights into farmers’ responses and

resilience to climate change. Extending the work of Ramsey, Bergtold, and Heier Stamm

(2020), our approach allows to take choice-specific attributes into account. Hence, we

can develop multiple scenarios reflecting the role of legislation, market conditions and

technological progress. What is more, our empirical case study on Southeast Germany

sheds more light on the adoption potential of agroforestry in an industrialized country

context. Much of the work on this topic has been done in a developing country context

so far.

The remainder of the article is structured as follows. First, we provide a short de-

scription of agroforestry and wood-based agricultural land use systems before presenting

our conceptual framework (Sec. 2). In section 3, we present our data collection and

empirical strategy. Section 4 describes the result from the discrete choice experiment and

the weather simulations, followed by a discussion of the most important finding (Sec. 5).

The paper closes with a summary and several concluding remarks in Sec. 6.

2 Background and conceptual framework

2.1 A short description of agroforestry and wood-based agri-

cultural land use systems

As mentioned above, agroforestry systems are land-use systems where woody perennials

are integrated with agricultural crops and/or livestock on a piece of land, either in some

sort of spatial arrangement or temporal sequence (Nair, 1985; Leakey, 2017; Cardinael

et al., 2021). This definition includes a wide range of diverse systems including silvopas-

toral (the combination of trees with livestock), silvoarable (planting crops between rows of

trees), forest farming (food, herbal, botanical, or decorative crops under a forest canopy),

home gardens, as well as hedge, windbreak and riparian buffer strip systems and many

more (Pantera et al., 2021; USDA, 2019). Agroforestry is not a new concept and goes

back a very long time in many regions of the world (Pantera et al., 2021).
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In regard to the integration of trees on agricultural land, short rotation coppices

(SRC) have been identified as an attractive land use alternative from an economic and

ecological perspective (Wolbert-Haverkamp and Musshoff, 2014; Baum et al., 2009). SRCs

usually consist of fast-growing tree species such as poplar, willow, paulownia, robinia, or

eucalyptus with short rotation periods and frequent harvests (every 3–5 years) (Rödl,

2019). Other than agroforestry, SRCs are usually bound to a single use on the same field.

More recently, alley cropping (AC) systems that integrate strips of short rotation

coppices into agricultural fields have been receiving increasing attention (Tsonkova et al.,

2012). In such a system, farmers produce crops and woody biomass on the same field at

the same time, which can lead to multiple advantages across several domains.

For instance, Paul, Weber, and Knoke (2017), Gosling et al. (2020) and Schoeneberger,

Bentrup, and Patel-Weynand (2017) show that AC can generate higher economic returns

than single crop land-uses. Furthermore, diversifying production output can raise eco-

nomic stability (Tsonkova et al., 2012). What is more, ACs can contribute to a more

sustainable bio-based economy by simultaneously providing food and renewable raw ma-

terials (Gillich et al., 2019). Numerous studies have also found positive effects on crop

yield and land-use efficiency (see e.g. Schoeneberger, Bentrup, and Patel-Weynand, 2017).

Alley cropping also provides a range of environmental services due to its multi-

functional nature. It can break up large-scale structures, increase biodiversity through in-

creased habitat and species diversity and their connectivity across agricultural landscapes,

reduce soil erosion as well as nutrient leaching (Langenberg, Rauert, and Theuvsen, 2018;

Tsonkova et al., 2012; Schoeneberger, Bentrup, and Patel-Weynand, 2017).

Finally, agroforestry systems as well as short rotation coppices to a certain degree

can play an important role in approaching climate change mitigation and adaptation

synergistically. In terms of mitigation, AC and SRC systems can store large amounts of

carbon in aboveground and belowground biomass (Albrecht and Kandji, 2003) as well

as in soil (Cardinael et al., 2017), thus reducing atmospheric carbon dioxide (CO2) con-

centration (Cardinael et al., 2021; Tsonkova et al., 2012; Schroeder, 1993). Regarding

adaptation, the intergration of trees on agricultural land provides a buffer to weather
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extremes through regulating hydrological cycles, improving nutrient- and water-use ef-

ficiency, and modifying microclimates (Wolz et al., 2018; Ashraf et al., 2019; Pramova

et al., 2012). Agroforestry can also diversify income to hedge financial risk (Wolz et al.,

2018), and make production more resilient to climatic change (van Noordwijk et al.,

2021).

Despite these manyfold advantages, silvoarable agroforestry systems are still not very

widespread in Europe (den Herder et al., 2015; Langenberg, Rauert, and Theuvsen, 2018).

Van Noordwijk et al. (2014) notes that there is huge potential for the introduction and

expansion of agroforestry areas around the globe.

2.2 Land Use, Random Utility Maximization and Weather Ex-

pectations

Given the large potential for the introduction and expansion of agroforestry, this study

seeks to elicit farmers’ preferences for agroforestry and short rotation coppice in com-

parison to conventional crop farming against the background of a changing climate. The

theoretical basis for our analysis is based on random utility maximization (RUM) fol-

lowing Lancaster (1966) and McFadden (1973). When it comes to planning the usage

of their land, farmers face a choice among a set of alternative land uses in one or more

decision situations under varying conditions. Each farmer obtains a certain level of in-

direct utility from a land-use alternative. In a given decision situation t, she will select

alternative i if and only if Uit > Ujt, j 6= i. The indirect utility of an alternative cannot

be directly measured but it can be expressed by a systematic (deterministic) component

V , reflecting specific characteristics as well as farmers’ individual and location-specific

features and a random component ε, representing unobserved decision-relevant elements

(Mariel et al., 2021). A farmer n obtains a certain level of of indirect utility Unjt from a

land use alternative j in a choice situation t.

Unjt = Vnjt + εnjt (1)
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As is standard, we assume farmers utility for a land use alternative to vary with a set

of decision-relevant characteristics (x, see Sec. 3.2.1). Furthermore, as agricultural land

use is heavily dependent on weather (c), we assume that farmers’ utility also depends on

expected weather at the time of the planting decision:

Vnjt = f(xnjt, cnt; β, γ) (2)

where β and γ are coefficients to be estimated. Following Nerlove (1958) and Ram-

sey, Bergtold, and Heier Stamm (2020), we assume that farmers have adaptive weather

expectations that are based on past local weather history, where both short-term and

long-term trends might affect land use choices. What is more, it is realistic to assume

that farmers do not assign equal importance on each past weather event, which is why a

simple average of past weather would not properly reflect farmers’ expectations. Ramsey,

Bergtold, and Heier Stamm (2020) express the expected-weather-formation-process as

follows:

cnkt = ω0 + ωs W (c̈nkt−1, . . . , c̈nkt−r) + ωl W (c̈nkt−r−1, . . . , c̈nkt−R) (3)

where c̈nkt−r are actual past weather events. ω0 is a reference expectation, ωs reflects a

farmer’s weight assigned to the recent past, ωl is the weight assigned to the more distant

past, and W (·) is a weighting function (e.g. annual mean). Hence, weather expectations

are formed by two components, one reflecting longer term weather patterns (”signal”)

and one reflecting short term weather variations (”noise”). In terms of climate change

adaptation (i.e. the adoption of novel land use options), one would presume that the

signal plays the dominant role in decision making. However, especially with respect to

severe, more tangible weather shocks, the noise component might be more important

because of its immediate negative effect on production Ramsey, Bergtold, and Heier

Stamm (2020), while such an experience might level off with ordinary weather events in

the longer run.

In light of these theoretical considerations, we expect that past (extreme) weather
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events are likely to influence farmers’ decisions to adopt more climate change-robust and

mitigating land-use options such as agroforestry or short rotation coppice by affecting

farmers’ weather expectations, which ultimately influence farmers’ preferences for selected

options.

3 Material and methods

We first provide information on the case study region, Bavaria, before describing the

discrete choice experiment (DCE) setup we used to collect data on farmers’ preferences.

We then present the data that are used to describe weather. By combining the experi-

mental with the weather data and utilizing a correlated random parameter logit model

(RPL) approach, we estimate farmers’ preferences and probabilities for the cultivation of

each land-use option and retrieve coefficient estimates reflecting the influence of land use

characteristics and (anticipated) weather. Finally, we describe the simulation approach

used to model the adaptive adjustment behavior of farmers in response to an extreme

weather year based on the estimates from the RPL model.

3.1 Study area

We conducted our DCE in Bavaria, a federal state of Germany in Central Europe. Lo-

cated in the southeast of Germany, Bavaria belongs to the core regions of agricultural

production within the European Union (EU). It reflects the variety of European farm-

ing (conditions) to a high extent, which is why we selected this site for conducting our

study. In terms of natural conditions, farming takes place along an elevational gradient of

1500m (from 100m in Northwest Bavaria to 1600m in Southeast Bavaria) and a macro-

climatic gradient with a mean annual temperature range between 3 and 10 °C and an

annual precipitation of 470–1592 mm (from 1960 to 2020). Its natural conditions, ranging

from pre-alpine and alpine areas with high precipitation and rather clayey, limestone and

dolomite based soils to regions with flat land and fertile loess soils to dry, marlstone,

limestone and dolomite based hillside locations, are well-suited for various agricultural
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production systems including crop farming, intensive and extensive dairy farming, pig

and cattle fattening and breeding, poultry farming, vegetable farming, orcharding, hop

production and viticulture. This heterogeneity is to a certain degree reflected in Bavaria’s

seven administrative districts (figure 1), which will be analyzed individually in addition

to the entire region in the results section.

Figure 1: The case study region Bavaria is a federal state of Germany and lies in
Central Europe. It is comprised of seven administrative districts.

3.2 Choice Experiment Setup

A discrete choice experiment was used to elicit the influence of land use characteristics on

farmers’ decision on whether or not to cultivate agroforestry. Each farmer was repeatedly

confronted with a choice situation, in which the attributes of three land-use alternatives

(namely short rotation coppice, alley-cropping, and status quo crop farming) varied.

3.2.1 Attribute Selection and Levels

Following a careful literature search and the feedback from agricultural experts, the at-

tributes we use to describe the land-use alternatives are: Average yearly margin con-

tribution, yearly margin contribution variability, minimum useful lifetime, payments for

ecosystem services and a dummy if the alternative qualifies as ecological priority area.

Our primary monetary attribute, the margin contribution, measures yearly revenues
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(yield times price), minus variable cost. Fixed cost and subsidies are not considered in

this measure. Moreover, because revenues and costs are spread over the entire production

period of short-rotation coppice and alley cropping, a margin contribution equivalent is

introduced, which corresponds to the annualized form of the net present value.

Previous studies show that uncertainty play an important role when it comes farm-

ers’ decision making in general (see e.g. Menapace, Colson, and Raffaelli, 2013) and land

allocation in particular (El-Nazer and McCarl, 1986; Knoke et al., 2015). We express

outcome uncertainty in terms of gross margin fluctuations. Given that farmers are pre-

dominantly risk-averse (Menapace, Colson, and Raffaelli, 2013), we expect an increase in

variability to negatively affect preferences.

The minimum useful lifetime of a land-use alternative is closely related to the en-

trepreneurial flexibility of farm businesses. Being longer tied to one land-use type means

a loss of flexibility (Musshoff, 2012), which is expected to negatively affect farmers’ pref-

erences.

Since SRC and AC provide a wide range of environmental services, payments for

ecosystem services could provide a positive incentive for farmers to cultivate one of these

land-use options (e.g. Layton and Siikamäki, 2009).

Finally, Langenberg, Rauert, and Theuvsen (2018) find that one major driver for

farmers to engage in alley-cropping might be the qualification as ”ecological priority area”.

Farmers have to attribute a certain amount of land to ecological priority areas (which are

considered environmentally-friendly) to receive area based ”greening” payments, which

account for approximately 30% of the farmers’ total basic payment.

We aimed for realistic levels of each attribute based on official databases (e.g. StMELF,

2018; LfL, 2018), previous studies (e.g. Gillich et al., 2019; Pröbstl-Haider et al., 2016;

Langenberg and Theuvsen, 2018; Hauk, Knoke, and Wittkopf, 2014), expert consultation

and plausibility considerations. Table 1 summarizes the attributes and attribute levels.
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Table 1: Description of attributes and levels

Attribute Description Attribute levels

MC Margin contribution (equivalent) (e/ha) 400a, 600, 800
MCV Margin contribution variation (%) 15a, 30
MUL Minimum useful lifetime (years) 3a,b, 16, 20, 24
PES Payment for environmental services (e/ha) 0a, 100, 200
Green Qualification as ecological priority area Yes, Noa

a Fixed attribute levels for the status quo alternative.
b Attribute level that only applies for the status quo alternative.

3.2.2 Conducting the Choice Experiment

After having determined choices, attributes and corresponding levels followed the ac-

tual choice experiment. We created a choice experiment with three labeled alternatives,

namely ”Short Rotation Coppice”, ”Agroforestry”, and ”Status Quo”. Given its labeled

nature, we followed Viney, Savage, and Louviere (2005) and created an LMA design for

our DCE, that resulted in 36 choice cards. To reduce the psychological burden of an-

swering all choice tasks we randomly blocked them into three sets of twelve choice cards.

An exemplary choice card can be found in the appendix A.1. Each respondent was then

randomly assigned to one of the three blocks. Before the participants started the choice

experiment, we explained how the DCE would work and provided descriptions of the al-

ternatives and attributes relevant for the task (see appendix A.2). To tackle hypothetical

bias, we used ”cheap talk” (Landry and List, 2007) and reminded the participants about

the danger of hypothetical bias and that they should answer truthfully.

Our survey consisted of several parts. After some general information and the re-

spondents’ consent to participate, we asked for general (socioeconomic) characteristics of

their farm, which was followed by the DCE. Finally, the participants were asked to give

further information on their local climate change perception and several character traits.

After an extensive pre-test phase in the early summer, the survey was conducted

online in October 2020. Respondents from Bavaria were recruited through a large panel

of farmers provided by an agricultural market research platform called agriEXPERTS

and through multiple outlets of a specialist publishing house for agriculture (Deutscher

Landwirtschaftsverlag, dlv). The survey included an invitation to take part in a
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lottery to win one of ten vouchers for a popular agricultural clothing shop worth 50 EUR

each. It took around twelve minutes to complete the questionnaire.

3.3 Weather variables

To accurately describe the local weather history of farms, we selected five common weather

indicators, namely average temperature, precipitation sum, number of dry days, number

of hot days and the number of heavy rain days during the local growing season (Mar–Oct).

The variables are derived from 0.1 degree gridded daily data from the European Climate

Assessment & Dataset (ECA&D) project (Cornes et al., 2018). Following ETCCDI (2018)

and DWD (2022), dry days are days with precipitation of < 1mm and hot days are defined

as days with maximum temperature > 30°Celsius. On heavy rain days precipitation

exceeds 20mm (DWD, 2022). The weather indicators were aggregated at the municipality

level (2031 municipalities) and linked to the responses from the questionnaire via zip

codes.

As outlined in section 2.2, farmers form their weather expectations based on historical

weather, which can be distinguished between short-term and longer-term weather pat-

terns. To capture this distinction, we define short-term and long-term weather variables

by different lag structures. In our base specification short-term weather patterns for our

five indicators are based on the average of years t − 1 to t − 3 (more recent past) and

longer-term weather patterns are based on the average of years t − 4 to t − 10 (more

distant past). Fig. 2 summarizes these variables. Further lag structures were computed

reflecting multiple candidate time horizons of expectation formation, which were later

tested against the base structure (sec. 4.2). All weather variables are mean-centered.

This will later be useful for the interpretation of the alternative-specific constants in the

RPL model and the corresponding willingness to adopt measures.1

1Mean-centering the weather variables will allow to directly interpret these measures, as the intercepts
will be evaluated at the average weather (for which all weather variables take on a value of zero.)
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Figure 2: Summary of the weather variables used for the estimation of our baseline
model with lag structure 1-3 and 4-10.

3.4 Econometric Approach

For our econometric analysis, we use the random parameter logit model to account for

preference heterogeneity in the utility function of the investigated sample (Hensher, Rose,

and Greene, 2015; Train, 2009). We parametrize the utility function (2) with alternative

specific constants (αji), land-use specific attributes (X) and individual-specific weather

parameters (C):

Vij = αji + βiXjt + δijCi + εijt (4)

The model formulation is a one level multinomial logit model, for individuals i = 1, . . . , N

in choice setting t alternatives j. Assuming a Gumbel distribution of the error term εijt,

the probability of each choice j is (Hensher, Rose, and Greene, 2015):

Prob(yit = j) =
expαji + βiXjt + δijCi∑
j(expαji + βiXjt + δijCi)

(5)

In the random parameter logit framework, the coefficient vectors αji, βi, and δij are

considered random draws from a distribution whose parameters need to be estimated.

Under this assumption, we can use maximum simulated likelihood estimation to obtain
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coefficient estimates for αji, βi, and δij (Train, 2009). We use a total of 1000 Halton

draws for each model estimation. As for the parameter distributions, we assume:

(αji, βi) = (αj, β) + Γ ν(j)i (6)

δji = δji + Ω υji (7)

where ν(j)i and υji describe random unobserved preference variation, with mean zero and

covariance matrix with known values on the diagonal, fixed by identification restrictions.

Γ is a lower triangular matrix that allows correlation across the attribute-related random

parameters and Ω = diag(σ1, . . . , σk).

With this specification we follow Hess and Rose (2012) and Hess and Train (2017), who

show that only by allowing for correlation across attribute-related random parameters,

it is possible to capture scale heterogeneity alongside heterogeneity in utility coefficients.

According to Hess and Rose (2012, p.9): ”Such correlations can be expected in any

setting: they simply reflect that respondents’ preferences for one attribute are related

to their preferences for another attribute”. Ignoring this correlation could severely bias

parameter estimates. One reason why this specification is only rarely observed in the

literature might be its significantly higher computational burden (Mariel and Meyerhoff,

2018).

We assume all random parameters to be normally distributed except for the coefficient

of the contribution margin, which we assume to be log-normally distributed. We do this

for two reasons. First, economic theory states that the sign for the profit attribute should

always be positive. Second, we assure finite moments for the willingness to adopt values

(Daly, Hess, and Train, 2012), which are defined as the change in one attribute with

respect to the return margin. Hence they are the ratio of each parameter estimate and

the parameter estimate of the marginal contribution:

WTA =
(α̂ji, β̂i)

β̂i,contribution margin

(8)

By mean-centering the weather variables we can make direct use of the estimated ASCs.

15



Dividing them by the individual-specific coefficient estimate on the return margin gives

us the marginal willingness to adopt at mean weather because all mean centered weather

variables in C are zero at their means (see also Iacobucci et al., 2016).

3.5 Post-Estimation Simulation

To evaluate the short- and longer-term adjustment dynamics to an extreme weather

period, we simulate farm-level responses to one to five-year weather shocks over a period

of 10 years following the approach by Ramsey, Bergtold, and Heier Stamm (2020). The

simulation is based on the estimated parameters from the fitted random parameter logit

model in sec. 3.4. Our simulations are primarily based on the 2018 drought year, which

caused severe damages in German crop farming (Webber et al., 2020). Following the

reasoning of Girard, Delacote, and Leblois (2021), that different weather shock have

different impacts on land-use responses, we will also present simulation results for a

2003-like heatwave (Ciais et al., 2005).

Given the lag structure of the weather variables, we can simulate farmers’ adoption

probabilities in response to an extreme weather period each year during and after the

weather shock based on the formula for land use probabilities (Eq. 5). In the baseline

scenario, we replace the values of the weather variables C for every farm in years 0–

10 with their respective (sub-)sample longterm averages (LTA) over the 20-year period

1991–2020. For a one-year shock scenario, the 2018 (2003)-like event is assumed to occur

in period t = 0, and then weather returns to the LTA. This shock will affect the values

for the short-term weather variables (lags 1–3) in periods 1–3, and then they return to

the LTAs. The longer-term weather variables (lags 4–10) remain at the LTAs for periods

1–3 before changing to a ”shocked” level in years 4–10 after the shock (compare Ramsey,

Bergtold, and Heier Stamm, 2020, p.13). Fig. 3 illustrates the composition of each

weather variable over time for a one-year, a two-year and a three-year weather shock as

they enter equation 5 in the simulation.

We ran simulations for the full sample as well as for each district separately to explore

more regional adaptation paths. Table 2 summarizes the respective values used for the
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Figure 3: Illustration of the composition of the weather variables as they enter the
simulation scenarios and replace the original weather variables used for the RPL
estimation. The replacement procedure is demonstrated of a one-year, two-year and
three-year shock scenario. Longer-term shocks change accordingly.

construction of the weather variables.

Regarding the levels of the land-use attributes X, we constructed several scenarios,

reflected by different attribute levels used in the simulations. The respective levels and

scenarios are summarized in table 3.

4 Results

4.1 Sample Summary Statistics

In total, we received 210 responses. We deleted twelve responses after a series of plau-

sibility checks. Our analysis is thus based on the responses of 198 farmers. In Table 4,

summary statistics for key farm characteristics in our sample are described and compared

with the population means for Bavaria (mostly stemming from official census data). Ap-

proximately half of our sample are full-time farmers, which is only slightly higher than

the Bavarian average (45%). Several characteristics of our sample are on average similar

to the Bavarian average, namely cropland and grassland shares, farmers’ age and the

participation rate in agri-environmental programs. At the same time, our sample farms
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Table 2: Description of the weather indicators as they enter the 2018-like shock
simulations.

Precipitation
(mm/year)

Average
Temp.

(°C)

Dry days Heavy rain
days

Hot days

Bavaria (full sample)
Long-term average (baseline) 610.21 12.39 156.35 4.92 12.36
Extreme weather year (2018) 421.52 13.93 181.14 3.75 24.63
Difference -188.70 1.53 24.79 -1.17 12.26

Upper Bavaria
Long-term average (baseline) 778.48 12.27 147.98 7.77 11.14
Extreme weather year (2018) 583.21 13.70 170.29 6.23 17.99
Difference -195.27 1.44 22.32 -1.54 6.85

Lower Bavaria
Long-term average (baseline) 601.28 12.57 156.37 4.48 13.09
Extreme weather year (2018) 421.10 14.27 180.66 3.34 26.73
Difference -180.18 1.70 24.29 -1.14 13.64

Upper Palatinate
Long-term average (baseline) 509.76 12.30 160.66 3.09 12.52
Extreme weather year (2018) 327.00 13.97 184.70 1.97 29.04
Difference -182.75 1.67 24.04 -1.12 16.52

Upper Franconia
Long-term average (baseline) 525.48 12.13 158.80 3.40 11.58
Extreme weather year (2018) 302.93 13.72 185.51 1.60 25.63
Difference -222.55 1.59 26.70 -1.80 14.05

Middle Franconia
Long-term average (baseline) 474.35 12.85 164.70 2.91 15.00
Extreme weather year (2018) 316.06 14.39 193.00 2.93 31.40
Difference -158.29 1.54 28.30 0.02 16.40

Lower Franconia
Long-term average (baseline) 463.42 12.90 163.59 2.54 15.41
Extreme weather year (2018) 304.78 14.57 192.77 2.54 35.61
Difference -158.64 1.67 29.18 0.00 20.20

Swabia
Long-term average (baseline) 721.56 11.93 152.09 6.98 9.54
Extreme weather year (2018) 506.23 13.17 174.49 4.94 14.21
Difference -215.33 1.24 22.41 -2.03 4.68

Table 3: Description of the simulation scenarios and corresponding attribute values.

Alley-Cropping Short Rotation Coppice Status Quo

Scenario MC MC
V

MU
L

PE
S

Gre-
en

MC MC
V

MU
L

PE
S

Gre-
en

MC MC
V

MU
L

PE
S

Gre-
en

1. Regular-case 400 30.0 24 0 No 400 30.0 24 0 No 400 15 3 0 No
2. Regular-case w/
policy support

400 30.0 24 200 Yes 400 30.0 24 200 Yes 400 15 3 0 No

3. Regular-case w/
technological
improvement

400 30.0 16 0 No 400 30.0 16 0 No 400 15 3 0 No

4. Better-case for
agroforestry

600 22.5 20 100 Yes 600 22.5 20 100 Yes 400 15 3 0 No

5.Ideal-case for
agroforestry

800 15.0 16 200 Yes 800 15.0 16 200 Yes 400 15 3 0 No

Note: MC = Margin contribution (Euro), MCV = margin contribution variation (%), MUL = Minimum

useful lifetime (years), PES = Payments for environmental services (Euro), Green = Cultivated

area eligible for greening premium
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Table 4: Sample description and comparison with the population mean.

Sample Bavaria

Mean Median SD Population Mean

Full-time farming (1 if yes, 0
otherwise)

0.49 0 0.5 0.45c

Utilized area (ha) 69.79 40.5 89.84 36.66c

Share of cropland (%) 59.57 64.55 27.13 65.18c

Share of grassland (%) 34.07 30 22.9 34.37c

Share of forested land (%) 10.19 5 12.37 –

Share of rented land (%) 31.13 20 30.71 51.0c

Workforce (AWUa) 0.1 0 0.3 0.12c

Full-time farming (1 if yes, 0
otherwise)

1.63 1.25 1.29 2.27c

Farmer’s age (years) 48.34 50 12.42 50.3d

Higher education (1 if yes, 0
otherwise)b

0.24 0 0.43 –

Participation in agri-environmental
program (1 if yes, 0 otherwise)

0.73 1 0.44 0.68e

Note: Number of observations = 198; a AWU denotes annual working units. b Higher education refers

to having a university degree. Sources: c Destatis (2021b), d LfL (2015), e Destatis (2021a)

manage more land on average, have a smaller share of rented land and a smaller work-

force than the population mean. Also, the sample share of organic farms with 10% is

very similar to the population share (12%). Overall, the descriptive statistics show that

our sample reflects the Bavarian farmer population reasonably well, except for a few di-

mensions including farm size and labor. These deviations from the population mean are

not necessarily negative in light of a dynamic trend toward fewer but larger farms in the

EU (Wimmer and Sauer, 2020). Nearly all farmers stated they had already experienced

negative consequences a climate change related extreme weather events in particular in

the form of yield and quality losses.

4.2 Model Estimates and Willingness to Accept

4.2.1 Model estimates

The model estimation results are summarized in Table A1. In a first step, we compared

the model of our choice – the correlated random parameter logit (RPL) model – to a
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multinomial logit model (Model 1) and an uncorrelated RPL model with weather variables

(Model 2). Likelihood-ratio tests show that the correlated RPL model has a significantly

better fit to the data than the alternative models, which is why this model is our preferred

choice. Table A2 shows the parameters’ correlation structure. What is more, from these

tests we empirically confirm that the weather (history) variables have jointly a significant

impact on farmers’ land use decision as assumed in theory section. From Table A1 (Model

3), we can see by the attribute specific constants (ASC) that crop farming is preferred to

both SRC and AC at average weather conditions. We also find preference heterogeneity

(indicated by the estimates of the standard deviation of the random parameters) for most

choice attributes except for margin contribution variability.

4.2.2 Willingness to adopt

To obtain further insights into farmers’ land-use preferences, we calculated farmers’ will-

ingness to adopt based on the individual coefficient estimates from the correlated RPL

with weather variables. Figure 4 presents the results separately for both the full sample as

well as regional districts. Panel A shows that farmers have a negative general WTA with

respect to agroforestry (median value of −e123 for Bavaria) and short rotation coppice

(median value of −e513 for Bavaria) evaluated at average weather conditions. These

values can be interpreted as the farmers’ ceteris paribus compensations to cultivate the

corresponding alternative in addition to the contribution margin from the status quo crop

rotation. SRC is valued more negatively and has a larger heterogeneity than AC (and

crop farming), a pattern that is consistent across regional districts. Median WTA values

for AC range from −e83 in Lower Bavaria to −e132 in Central Franconia, and for SRC

from −e286 in Lower Bavaria to −e544 in Central Franconia. Hence, on average, farms

in Central Franconia seem to be most adherent to status quo crop farming, while farms

in Lower Bavaria seem to be most prone to switch to agroforestry and SRC.

As for the land use characteristics (Fig. 4 panel B), an increase in the contribution

margin variability (i.e. higher economic risk) as well as an increase in the minimum useful

lifetime (i.e. lower entrepreneurial flexibility) decrease the willingness to adopt a land use
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option, which is the case for all regions to varying extents. This also means a reduction

in these variables could lead to a higher willingness to cultivate agroforestry and SRC.

For instance, the negative WTA for agroforestry in the Lower Franconia subsample (me-

dian: −e128) could potentially be offset by a ceteris paribus reduction of the minimum

useful lifetime (median WTA: −e33.4) by 4 years. Furthermore, offering payments for

ecosystem services (PES) lead to an increase in the willingness to accept, e.g. for the full

sample, every extra PES Euro leads to an e0.53 increase. While this value varies across

observations and regions, the increase in ecosystem payments is in many cases underpro-

portional to the increase in the WTA (< 1) and thus quite inefficient. As already evident

from Table A1, accepting land as ecological priority area is not a useful lever to increase

farmers willingness to cultivate AC and SRC.

Figure 4: Summary of individual-specific willingness to adopt (WTA) estimates
expressed as EUR/ha.
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We refrain from analyzing the coefficient estimates of the weather variables individu-

ally because they are likely suffer from a certain degree of multicollinearity, which is not

a problem per se but makes ceteris paribus statements very difficult. We return to this

issue in Sec. 5.

4.2.3 Further robustness checks

As mentioned before, there are multiple possibilities for the empirical specification of the

lag structure of the weather history reflecting longer term weather patterns (”signal”)

and short term weather variations (”noise”). Therefore, we tested a series of alternative

weather variable specifications and re-estimated the correlated RPL model and compared

the model fit with our selected model (lags 1-3 and lags 4-10) (Tab. A3). We can see

that our preferred model fits the data best followed by models with lag structures 1/2-15

and 1-3/4-15.

4.3 Weather Simulations

To examine farmers’ agroforestry adoption in response to more extreme and adverse

weather patterns, that are predicted to occur more often and last longer, we simulate a

2018-like (and 2003-like) extreme weather year at the regional level and observe the devi-

ations of land-use probabilities from the average thirty-year baseline weather considering

multiple socioeconomic scenarios. We further simulate the same weather events lasting

for three and five years, respectively. Furthermore, we developed an interactive simu-

lation tool that allows to flexibly adjust and combine the simulation settings according

to one’s individual needs. This tool is available at: https://ge36raw.shinyapps.io/

main_dashboard/.

Turning to our pre-defined scenarios in Figure 5, for a one-year 2018-like weather

shock, we can see that in the regular-case scenario (all land-use options at their base

levels), farms’ land use probabilities remain – after an adjustment period – close to their

baseline levels. In all regions except Swabia is crop farming the preferred land-use type.

However, if we change the setting such that AC and SRC experience policy support

22

https://ge36raw.shinyapps.io/main_dashboard/
https://ge36raw.shinyapps.io/main_dashboard/


(”Regular-case w/ policy supp”). Alley-cropping becomes at least equally likely to be

adopted as crop farming in Upper and Lower Bavaria. This is even more pronounced if

the minimum useful lifetime of wood-based cultivars is reduced to sixteen years. From

the scenarios with more preferential conditions for the wood-based land uses, we can see

that farmers in Upper Palatinate and Middle Franconia are quite reluctant to adopt these

land use types. We can observe an interesting pattern across all scenarios and regions.

In the first years after a one-year shock, farmers tend to prefer status quo crop farming,

indicated by an increasing adoption probability. We find similar outcomes for a 2003-like

weather event (Table A1), although we can observe less adjustment movement in terms

of crop farming but more pronounced adjustment in terms of SRC. Also, we find that

alley-cropping becomes also more likely to be adopted in Swabia.

Concerning a longer shock duration, Table 6 shows the simulation results for a three-

year 2018-like extreme event. Over all, we find very similar patterns as before. Neverthe-

less, following the more pronounced extreme weather event (in terms of its duration) the

farms’ adaptation path following such an event becomes also more marked. For instance

in Lower Bavaria, the probability of cultivating crops only reaches nearly 100% in scenar-

ios one and three following the extended weather shock before falling considerably below

the baseline level (and the probability of adopting AC). We also find that without policy

intervention or the shortening of the minimum useful lifetime, AC becomes the preferred

land use option in Upper and Lower Bavaria. In the case of a 2003-like extended weather

event (Fig. A2) and looking at the full sample, alley cropping becomes the preferred

land-use choice regardless of the scenario. What is more, the adaptation path regarding

crop farming becomes considerably more volatile.

Finally, looking at an even more extensive weather shock spanning five years (Fig 7),

we can see that alley cropping eventually becomes the preferred land-use type in almost

all instances (except for Swabia and Middle Franconia), which holds also true for a 2003-

like weather period (Fig A3). However, in case of a 2003-like five-year weather period,

alley cropping is also preferred in Swabia.

Overall, we find that farmers in Lower and Middle Franconia are most reluctant to
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Figure 5: Summary of the propensity scores obtained from the step-1 propensity forest
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Figure 6: Summary of the propensity scores obtained from the step-1 propensity forest
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Figure 7: Summary of the propensity scores obtained from the step-1 propensity forest
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transition away from status quo crop farming. Our results show that the socioeconomic

conditions affect the land-use response of farmers to regional weather extremes. This

involves policy support as well as technological progress. Furthermore, we find regional

differences in farmers’ willingness to adopt agroforestry and short-rotation coppice after

an extreme weather event. Finally our results show that prolonged extreme weather

periods lead to an increased probability of adopting climate-resilient agroforestry land-

use systems in our sample.

5 Discussion

Weather resilience capacities

From the result section (4), we can observe a series of interesting patterns. Regard-

ing farmers’ dynamic land-use responses to extreme weather years (Section 4.3), we find

characteristic response pathways that occur across farms and regions before reaching a

(novel) equilibrium state. More specifically, these pathways can largely be divided into

three phases: an absorption phase (during and directly after a shock, land-use probabil-

ities move away from the baseline), a recovery phase (probabilities return to the initial

levels), and an adaptation phase (probabilities move away from the initital level toward

a (new) equilibrium). These phases reflect important resilience capacities in agricultural

systems (OECD, 2020; Meuwissen et al., 2019).

As for the absorption phase, we find that the probability of status quo crop farming

increases across all regions for a 2018-like weather shock. Since crop farming is also the

most the land-use system with the highest probability in most scenarios and regions, we

can conclude that farms adhere even stronger to their status quo in the direct aftermath

of a shock than in the baseline. This might be surprising at first sight, because one would

expect farms to turn to more weather-robust land-uses like AC and SRC (Ogunbode et al.,

2019; Wilson et al., 2020). However, in the short-run, decisional factors are usually rigid,

and production structures fixed, and thus limiting farmers’ capacity to react (Girard,

Delacote, and Leblois, 2021). Further barriers to transform their land-use directly after
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a (long-lasting) weather shock might lie in behavioral barriers such as farmers’ perceived

risk or their perceptions of the benefits and costs associated with more weather-robust

land-uses (Dessart, Barreiro-Hurlé, and Van Bavel, 2019). Farmers might therefore be

prone to only make adjustments within their familiar land-use system (i.e. crop farming).

This trend intensifies with the duration of the weather shock.

Depending on the situation, the recovery phase can last between one and five years.

We can see that independent of the scenario and region, the sample farms are able to

recover from a weather shock in terms of their land-use probabilities (see also Béné et al.,

2012; OECD, 2020). This might also be seen as a phase when the extreme weather

period has settled and farmers are able to reconsider their initial land-use and prepare

for transformative action.

In the adaptive phase, we find mixed effects regarding farmers’ adaptive capacity

(Smit and Wandel, 2006; Engle, 2011). If there is no monetary incentive or technological

improvement in AC and SRC, which provide a comparative advantage over crop farming

apart from its relative excellence with respect to climate robustness, farms are reluctant

to transform and adopt these options. Although we find a certain degree of heterogeneity

across shocks and regions, this trend is quite stable in our analyses. However, farmers

appear to acknowledge the relative excellence of the agroforestry system, because irrespec-

tive of the scenario and region, the probability of adopting this system after a weather

shock increases in the long-run. Especially, in the case of a very long-lasting extreme

weather period (i.e. five years), agroforestry becomes the preferred land-use option.

What is more, our results empirically confirm the conceptual considerations by Meuwis-

sen et al. (2019) that resilience and its capacities are shock- and context-specific.

Policy implications

Our results have also important implications for policy-makers. First, payments for

ecosystem services increase farmers’ probability of adopting wood-based and agroforestry

land-use systems. They can therefore be an important lever to promote the cultivation

of these climate-robust systems. While PES might be effective in promoting climate-
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robust land-use systems, they are not cost-effective. From Sec. 4.2.2, we learned that

one extra Euro of such payments only increase the marginal willingness to adopt these

system for most farms (approx. 67%) by less than a Euro (median: e0.54). This find-

ing is in line with a series of previous studies finding low cost-effectiveness of PES and

agri-environmental schemes (e.g. Chabé-Ferret and Subervie, 2013; Bartolini et al., 2021;

Stetter, Mennig, and Sauer, 2022). However, there is within and across-region hetero-

geneity, e.g. the cost-effectiveness is on average highest in Upper (90%) and lowest in

Central Franconia (28%). Accounting for such differences and offer environmental pay-

ments for the cultivation of agroforestry on a regional level could significantly increase

the cost-effectiveness of such payments (Wünscher, Engel, and Wunder, 2008; Stetter,

Mennig, and Sauer, 2022).

Another policy-relevant driver of agroforestry adoption is the minimum useful life-

time of the wood-based land use options. Farmers seem to assign a high value to their

entrepreneurial flexibility (see also Musshoff, 2012). Rosenqvist and Dawson (2005), Avo-

hou et al. (2011) and Londo et al. (2001) show that the useful lifetime of wood-based

land uses is very important for their economic viability. To incentivise land-use change,

legislators could establish a framework to encourage the development of coppices with

reduced minimum useful lifetime but without reduced economic benefits. One way to do

this might be the promotion of novel breeding methods, which have shown high innova-

tion potential across several domains (Qaim, 2020).

Conceptual framework

Our analysis adds to a small but increasing body of studies that assess the link between

climate variability and land-use change (Girard, Delacote, and Leblois, 2021). While most

of these previous studies focus on established land use types and crops (Ramsey, Bergtold,

and Heier Stamm, 2020; Salazar-Espinoza, Jones, and Tarp, 2015; He and Chen, 2022),

our approach allows to ex ante assess the potential land-use of novel, not-established

land-use types that could play an important role in the future.
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Limitations

Finally, our study has some limitations that bear mentioning. For instance, we use cross-

sectional weather data for the estimation of our econometric models. This means, we

measure farmers’ preferences only at one point in time (October 2020). This might be

problematic under the assumption that preferences vary temporally (neglecting weather

changes, which we account for in our model). However, several studies suggest that

preferences are likely to be stable at least in the short- to medium-run (see e.g. Dasgupta

et al., 2017; Doiron and Yoo, 2017; Andersen et al., 2008). Another weakness relates to the

direct interpretation of the estimated weather coefficients in the RPL model. It is unlikely

that any of the weather indicators changes in isolation, i.e. ceteris paribus statements

are not valid. This is why we refrain from directly interpreting the estimated weather

coefficients and instead focus on the weather simulations, which alleviate this problem to

some extent (Ramsey, Bergtold, and Heier Stamm, 2020). Furthermore, we find multiple

common characteristics of our sample and the underlying Bavarian farmer population,

indicating reasonable representativeness. Although this is true for the full sample, it

is likely not the case for our subsample analysis, which is why our results should be

interpreted with care regarding their generalizability at the regional level (Pachali, Kurz,

and Otter, 2020).

6 Summary and concluding remarks

Climate change poses exceptional challenges to farm businesses. Especially, the rising

number of extreme weather events call for action in terms of climate change adaptation

and mitigation. The cultivation of agroforestry and wood-based land-use systems could

play a key role in making farms more climate resilient. This study analyzes farmers’

dynamic willingness to adopt such systems in response to extreme weather periods. To

this end, we integrate random utility theory with the concept of adaptive weather ex-

pectations. Methodologically, we combine a discrete choice experiment conducted with

farmers in October 2020 in Bavaria, Germany with local weather data. For our analysis,
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we use a correlated random parameter model, which serves as a basis for regional weather

simulations following Ramsey, Bergtold, and Heier Stamm (2020).

Our results indicate that farms are generally reluctant to adopt agroforestry and

short-rotation coppice compared to crop farming but they are more likely to adopt these

options after an extreme weather event in the medium- to long-run. Furthermore, we find

characteristic weather response pathways that can be divided into three phases reflecting

important resilience capacities, namely absorption, recovery, and adaptation. Moreover,

our findings show that policy makers can effectively promote the adoption of agroforestry

through payments for ecosystem services – although with low cost-effectiveness – and

through fostering technological progress. Several robustness checks are conducted to

assess the plausibility of our model. The paper also addresses important limitations con-

cerning the underlying data, its representativeness and the model interpretation. Overall,

our results show that farms might be increasingly likely to switch to agroforestry and

wood-based systems in response to regional weather extremes.

Finally, we want to outline potential paths for future research. First, it would be

interesting to assess the statistical uncertainty of the simulations. This could, for in-

stance, either be done by means of a (computationally very expensive) nonparametric

bootstrap procedure or by switching to a (hierarchical) Bayesian estimation framework.

Furthermore, it would also be interesting to evaluate the appropriateness of our approach

for other climate change adaptation strategies outside land-use. Last, we would appre-

ciate similar studies in different regions around the world for to get an overall better

understanding of the causal link between climate change and land-use.
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rand, E. Kouakoua, and C. Chenu. 2017. “Increased soil organic carbon stocks under

agroforestry: A survey of six different sites in France.” Agriculture, Ecosystems and

Environment 236:243–255.
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—. 2021b. “Landwirtschaftszählung 2020 - Regionale Ergebnisse.”

Dhakal, A., G. Cockfield, and T.N. Maraseni. 2015. “Deriving an index of adoption rate

and assessing factors affecting adoption of an agroforestry-based farming system in

Dhanusha District, Nepal.” Agroforestry Systems 89:645–661.

34



Doiron, D., and H.I. Yoo. 2017. “Temporal Stability of Stated Preferences: The Case of

Junior Nursing Jobs.” Health Economics 26:802–809.

Duguma, L.A., P.A. Minang, and M. Van Noordwijk. 2014. “Climate change mitigation

and adaptation in the land use sector: From complementarity to synergy.” Environ-

mental Management 54:420–432.

DWD. 2022. “German Climate Atlas Explanations.”

El-Nazer, T., and B.A. McCarl. 1986. “The Choice of Crop Rotation: A Modeling Ap-

proach and Case Study.” American Journal of Agricultural Economics 68:127–136.

Engle, N.L. 2011. “Adaptive capacity and its assessment.” Global Environmental Change

21:647–656.

ETCCDI. 2018. “Climate Change Indices.”

Frey, G.E., D.E. Mercer, F.W. Cubbage, and R.C. Abt. 2013. “A real options model

to assess the role of flexibility in forestry and agroforestry adoption and disadoption

in the Lower Mississippi Alluvial Valley.” Agricultural Economics (United Kingdom)

44:73–91.

Gillich, C., M. Narjes, T. Krimly, and C. Lippert. 2019. “Combining choice modeling

estimates and stochastic simulations to assess the potential of new crops-The case of

lignocellulosic perennials in Southwestern Germany.” GCB Bioenergy 11:289–303.

Girard, J., P. Delacote, and A. Leblois. 2021. “Agricultural households’ adaptation to

weather shocks in Sub-Saharan Africa: Implications for land-use change and deforesta-

tion.” Environment and Development Economics 26:538–560.

Gomes, L.C., F.J. Bianchi, I.M. Cardoso, R.B. Fernandes, E.I. Filho, and R.P. Schulte.

2020. “Agroforestry systems can mitigate the impacts of climate change on coffee pro-

duction: A spatially explicit assessment in Brazil.” Agriculture, Ecosystems and Envi-

ronment 294:106858.

35



Gosling, E., E. Reith, T. Knoke, and C. Paul. 2020. “A goal programming approach to

evaluate agroforestry systems in Eastern Panama.” Journal of Environmental Manage-

ment 261:110248.

Haqiqi, I., D.S. Grogan, T.W. Hertel, and W. Schlenker. 2021. “Quantifying the impacts

of compound extremes on agriculture.” Hydrology and Earth System Sciences 25:551–

564.

Hauk, S., T. Knoke, and S. Wittkopf. 2014. “Economic evaluation of short rotation cop-

pice systems for energy from biomass - A review.” Renewable and Sustainable Energy

Reviews 29:435–448.

He, X., and Z. Chen. 2022. “Weather, cropland expansion, and deforestation in Ethiopia.”

Journal of Environmental Economics and Management 111:102586.

Hensher, D.A., J.M. Rose, and W.H. Greene. 2015. Applied Choice Analysis . Cambridge:

Cambridge University Press.

Hernández-Morcillo, M., P. Burgess, J. Mirck, A. Pantera, and T. Plieninger. 2018. “Scan-

ning agroforestry-based solutions for climate change mitigation and adaptation in Eu-

rope.” Environmental Science and Policy 80:44–52.

Hess, S., and J.M. Rose. 2012. “Can scale and coefficient heterogeneity be separated in

random coefficients models?” Transportation 39:1225–1239.

Hess, S., and K. Train. 2017. “Correlation and scale in mixed logit models.” Journal of

Choice Modelling 23:1–8.

Iacobucci, D., M.J. Schneider, D.L. Popovich, and G.A. Bakamitsos. 2016. “Mean cen-

tering helps alleviate “micro” but not “macro” multicollinearity.” Behavior Research

Methods 48:1308–1317.

IPCC. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability - Contribution

of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel

36



on Climate Change, P. v. d. L. M.L. Parry, O.F. Canziani, J.P. Palutikof, C.E., and

Hanson, eds. Cambridge, UK: Cambridge University Press.

—. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate

Change, S. V., Masson-Delmotte, P. Zhai, A. Pirani, J. B. L. Connors, C. Péan, S.
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A.1 Description of the DCE alternatives
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A.2 Description of the DCE attributes
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A.3 Weather variable formulation for simulation

One year shock

weath1to3t =
1

3
weathshock +

2

3
weathlta for t = 1, 2, 3 (9)

weath1to3t =weathlta for t = 4, . . . , 10 (10)

weath4to10t =weathlta for t = 1, 2, 3 (11)

weath4to10t =
1

7
weathshock +

6

7
weathlta for t = 4, . . . , 10 (12)
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A.4 Weather Simulations of a 2003-like extreme weather event

Figure A1: Summary of the propensity scores obtained from the step-1 propensity forest
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Figure A2: Summary of the propensity scores obtained from the step-1 propensity forest
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Figure A3: Summary of the propensity scores obtained from the step-1 propensity forest
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Table A1: Estimation results summary

MNL uncor. RPL cor. RPL

Means
ASC: SRC −1.52 (0.22)∗∗∗ −3.82 (0.57)∗∗∗ −3.52 (0.60)∗∗∗

ASC: AC −0.98 (0.22)∗∗∗ −2.04 (0.53)∗∗∗ −0.89 (0.53)◦

Returns 0.00 (0.00)∗∗∗ −4.87 (0.10)∗∗∗ −4.80 (0.10)∗∗∗

Returns variability −0.01 (0.00)∗ −0.03 (0.01)∗∗ −0.05 (0.01)∗∗∗

Min. useful lifet. −0.04 (0.01)∗∗∗ −0.22 (0.03)∗∗∗ −0.26 (0.03)∗∗∗

PES 0.00 (0.00)∗∗∗ 0.01 (0.00)∗∗∗ 0.01 (0.00)∗∗∗

No greening −0.09 (0.07) −0.64 (0.17)∗∗∗ −0.25 (0.22)
Rain 1-3:SRC 0.01 (0.00)∗ 0.07 (0.01)∗∗∗ 0.10 (0.02)∗∗∗

Rain 1-3:AC 0.01 (0.00)∗ 0.02 (0.01)∗ 0.04 (0.01)∗∗∗

Rain 4-10:SRC −0.02 (0.01)∗ −0.20 (0.03)∗∗∗ −0.09 (0.03)∗∗∗

Rain 4-10:AC −0.01 (0.01)∗ −0.06 (0.02)∗∗∗ −0.02 (0.02)
Temp. 1-3:SRC 1.17 (0.84) −5.44 (1.91)∗∗ −9.36 (2.48)∗∗∗

Temp. 1-3:AC −1.66 (0.67)∗ −14.06 (2.02)∗∗∗ −1.70 (1.96)
Temp. 4-10:SRC −1.29 (0.86) 6.05 (1.95)∗∗ 8.21 (2.54)∗∗

Temp. 4-10:AC 1.80 (0.69)∗∗ 14.25 (2.00)∗∗∗ 1.33 (1.79)
Dry days 1-3:SRC −0.05 (0.04) −0.30 (0.13)∗ 0.69 (0.15)∗∗∗

Dry days 1-3:AC −0.03 (0.04) 0.18 (0.10)◦ −0.04 (0.11)
Dry days 4-10:SRC −0.03 (0.05) −0.80 (0.18)∗∗∗ −0.46 (0.20)∗

Dry days 4-10:AC −0.09 (0.05)◦ −0.53 (0.12)∗∗∗ −0.04 (0.12)
Heavy rain 1-3:SRC 0.03 (0.16) −0.71 (0.38)◦ −2.87 (0.49)∗∗∗

Heavy rain 1-3:AC 0.11 (0.13) −0.27 (0.34) 0.17 (0.35)
Heavy rain 4-10:SRC 0.16 (0.23) 5.48 (0.92)∗∗∗ 3.27 (0.96)∗∗∗

Heavy rain 4-10:AC 0.02 (0.20) 2.34 (0.56)∗∗∗ −0.74 (0.56)
Hot days 1-3:SRC 0.01 (0.05) 0.88 (0.18)∗∗∗ 0.70 (0.20)∗∗∗

Hot days 1-3:AC 0.13 (0.04)∗∗ 0.98 (0.16)∗∗∗ −0.01 (0.15)
Hot days 4-10:SRC −0.10 (0.11) −2.01 (0.36)∗∗∗ −1.75 (0.40)∗∗∗

Hot days 4-10:AC −0.18 (0.09)◦ −1.75 (0.30)∗∗∗ 0.30 (0.29)
Standard deviations

SD Rain 1-3:SRC 0.06 (0.01)∗∗∗ 0.05 (0.00)∗∗∗

SD Rain 1-3:AC 0.05 (0.00)∗∗∗ 0.02 (0.00)∗∗∗

SD Rain 4-10:SRC 0.06 (0.00)∗∗∗ 0.05 (0.00)∗∗∗

SD Rain 4-10:AC 0.05 (0.00)∗∗∗ 0.02 (0.00)∗∗∗

SD Temp. 1-3:SRC 2.02 (0.57)∗∗∗ −4.03 (0.58)∗∗∗

SD Temp. 1-3:AC 2.28 (0.44)∗∗∗ −0.74 (0.48)
SD Temp. 4-10:SRC 0.02 (0.33) 1.77 (0.46)∗∗∗

SD Temp. 4-10:AC −0.81 (0.29)∗∗ −4.44 (0.65)∗∗∗

SD Dry days 1-3:SRC 0.02 (0.04) 0.09 (0.04)∗

SD Dry days 1-3:AC 0.08 (0.02)∗∗ 0.00 (0.04)
SD Dry days 4-10:SRC −0.02 (0.03) −0.20 (0.04)∗∗∗

SD Dry days 4-10:AC 0.12 (0.04)∗∗ 0.22 (0.04)∗∗∗

SD Heavy rain 1-3:SRC 0.57 (0.14)∗∗∗ 0.10 (0.18)
SD Heavy rain 1-3:AC −0.24 (0.15) −0.37 (0.20)◦

SD Heavy rain 4-10:SRC 0.08 (0.11) −0.08 (0.17)
SD Heavy rain 4-10:AC 0.11 (0.11) 0.17 (0.11)
SD Hot days 1-3:SRC 0.09 (0.05) −0.30 (0.06)∗∗∗

SD Hot days 1-3:AC −0.25 (0.04)∗∗∗ −0.28 (0.04)∗∗∗

SD Hot days 4-10:SRC 0.50 (0.09)∗∗∗ 0.47 (0.11)∗∗∗

SD Hot days 4-10:AC −0.78 (0.11)∗∗∗ −0.57 (0.11)∗∗∗

SD Returns 1.08 (0.07)∗∗∗ 1.22 (0.69)◦

SD Returns variability 0.07 (0.01)∗∗∗ 0.33 (0.57)
SD Min. useful lifet. 0.25 (0.02)∗∗∗ 1.11 (0.07)∗∗∗

SD AES 0.01 (0.00)∗∗∗ 0.10 (0.02)∗∗∗

SD No greening 1.27 (0.20)∗∗∗ 0.28 (0.03)∗∗∗

SD ASC: SRC −2.38 (0.32)∗∗∗ 0.01 (0.00)∗∗∗

SD ASC: AC −0.33 (0.23) 1.76 (0.28)∗∗∗

Correlation - No Yes

logLik −2156.04 −1184.13 −1155.21
Pseudo-R2 0.09 0.50 0.51
AIC 4366.09 2476.27 2460.43
Obs. 2376.00 2376.00 2376.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1
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Table A2: Parameter correlation matrix of the RPL model.

ASC:
SRC

ASC:
AC

Returns Returns
variabil-

ity

Min.
useful

lifet.

PES No
greening

ASC:
SRC

0.01 -0.45 0.51 0.29 0.46 0.26 0.57

ASC:
AC

-0.45 1.76 0.08 0.11 -0.08 0.09 -0.34

Returns 0.51 0.08 1.22 0.88 0.67 -0.05 0.25

Returns
variabil-
ity

0.29 0.11 0.88 0.33 0.75 -0.43 -0.12

Min.
useful
lifet.

0.46 -0.08 0.67 0.75 1.11 -0.11 -0.14

PES 0.26 0.09 -0.05 -0.43 -0.11 0.10 0.23

No
greening

0.57 -0.34 0.25 -0.12 -0.14 0.23 0.28
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Table A3: Comparison different lag structures

Log
Likelihood

McFadden
Pseudo R2

Akaike
Information

Criterion

Selected Model
short-term: 1-3 years,
long-term: 4-10 years

-1155.21 0.51 2460.43

Specification Alt. 1
short-term: 1 year,
long-term: 2-10 years

-1389.99 0.41 2929.97

Specification Alt. 2
short-term: 1 year,
long-term: 2-15 years

-1176.99 0.50 2503.98

Specification Alt. 3
short-term: 1 year,
long-term: 2-20 years

-1400.24 0.41 2950.47

Specification Alt. 4
short-term: 1-3 year,
long-term: 4-15 years

-1238.40 0.48 2626.81

Specification Alt. 5
short-term: 1-3 year,
long-term: 4-20 years

-1382.27 0.42 2914.54

Specification Alt. 6
short-term: 1-5 year,
long-term: 6-10 years

-1411.71 0.40 2973.42

Specification Alt. 7
short-term: 1-5 year,
long-term: 6-15 years

-1398.10 0.41 2946.20

Specification Alt. 8
short-term: 1-5 year,
long-term: 6-20 years

-1405.48 0.41 2960.97
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