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Abstract 

Post–harvest losses (PHL) are particularly critical for developing countries. This is especially 

evident in Sub-Saharan (SSA) countries, where PHL are estimated to be about 37% of the total 

food production. Climate is a core determinant of cereal losses, as biodeterioration factors are 

sensitive to the temperature and humidity. In this paper we analyse to what extent climatic 

conditions affect PHL. The analysis considers Sub-Saharan countries and focuses on maize 

production over the period 2000-2020 period. Data on PHL are taken from APHLIS (African 

Postharvest Losses Information System), which represents a network of cereals and grain 

experts in SSA countries. Data collected by APHLIS are aimed at improving existing 

aggregated data on PHL (e.g. FAO data). PHL data quantify the percentage loss for each phase 

of the post-harvest chain. APHLIS has some unique characteristics, as it provides PHL at the 

province (Administrative 1 - ADM1) level over time. The main results of our analysis suggest 

that humidity is the most relevant determinant of PHL in this region. Our results are relevant, 

especially if we consider the future instability of the climate in this area. 
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1 Introduction

Despite the growing availability of foods over the last fifty years, which allowed an

important reduction of worldwide hunger, more than one in seven person still does

not have access to a sufficient protein and energy intake (Godfray et al., 2010). This

critical situation is further exacerbated by the increase in global population, which

will be estimated to reach 9 billion by 2050 (FAO, 2009). Almost all this growth is

expected to occur in less developed countries (LDCs), where poverty and hunger are

more diffused. The needs to improve food production is however complicated by the

growing threats posed by climate change, and the simultaneous concerns on how the

resulting mitigation and adaptation strategies will affect the food system (Godfray

et al., 2010).

Notwithstanding this critical situation, food waste and losses are estimated to be,

on average, about 32% of the global food production (FAO, 2010). If one considers

cereals only, Post-harvest losses (PHL) are estimated to be on average 20.5% of the

overall production (FAO, 2011). In this paper we analyse to what extent climatic

conditions affect PHL. The analysis considers Sub-Saharan countries and focuses on

maize production over the period 2000-2021. Our research question is relevant, as in

the near future the high instability generated by climate change may further contribute
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to PHL growth, due to frequent changes in climatic conditions, which in turn may

create unfavourable storage conditions and at the same time increasing the number of

pests attacking stored cereal (Tefera, 2012). Climate is an important determinant of

cereal losses, as bio-deterioration factors are sensitive to temperature and humidity.

Climate and storage strategies are therefore correlated: hot and humid climates lead

farmers to adopt open storage structure, while in hot and dry climates sealed storage are

preferable. If climatic conditions do not guarantee the proper drying setting, PHL may

increase substantially. This is especially true in SSA, where most of small farmers rely

on sun drying to make cereals suitable for the storage. The drying phase is particularly

important, because if grain is not sufficiently dried, this could promote the growth of

moulds, and thus leading to massive product losses.

PHL are estimated to be, on average, about 37% of the total food production

in Sub-Saharian countries (Kaminski and Christiaensen, 2014). This is clearly at odd

with their widespread undernourishment, and the importance that agricultural sector

cover in this countries, which contribute for more than 30% of their GDP, and about

15% of their exports (Tefera, 2012). PHL cause therefore a reduction of food supply in

the market, which not only contribute to hunger, but also leads food prices to increase

(Tefera, 2012). The latter in particular is often responsible of triggering political in-

stability in several LDCs. The reduction of PHL should be thus considered a priority

in the global political agenda, as any achievement in this direction can have important

implications for improving the sustainability and resilience of the food systems, as well

as reducing the environmental impact of agriculture (Stathers et al., 2020). Yet, from a

socio-economic perspective, a more efficient agricultural production can also have pos-

itive effects on the income of small-size producers, and, in turns, on the role played by

woman in this respect, who often are in charge of the different post-harvest activities.

The literature on this topic so far has mostly focused on the quantification of PHL

and food waste along the food supply chain, or have analysed the determinants of PHL

considering only a narrow number of cases (Kaminski and Christiaensen, 2014; Abass

et al., 2014). This paper contributes to this literature by proposing a first attempt

to analyse to what extent climatic conditions affect PHL, exploiting a large sample of

countries and using data at the sub-national level over a 20-year period.

We use data from APHLIS (African Post-harvest Losses Information System), that

provides comparable estimate of actual PHL at the regional (ADM1) level thanks to

the help of a network of cereals experts in Sub-Saharan African countries (SSA). From

a methodological perspective, we rely both on panel data and cross-section analysis.
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This allows a deeper understanding of the causes of PHL, overcoming some limitations

of the data (described in Section 4). The main results suggest that changes in the cli-

matic conditions affect PHL. We find that humidity and other proxy for water vapour

are detrimental for PHL, likely due to a favorable environment for pests. Higher tem-

perature negatively affects PHL only in combination with humidity, otherwise it has

a positive effect inducing better drying conditions. The size of the estimated effects

are not irrelevant when considering the role played by humidity. An increase by one

standard deviation in humidity (approximated by different variables) leads to a change

in PHL from 0.42 to 1.2 percentage points.

The remainder of this paper is organized as follows. The next section introduces

the background of the paper. In Section 3 we discuss the PHL measurement issue, and

we present the data used in the analysis. Section 4 presents the empirical analysis, while

the main results and conclusions are discussed in Section 5 and Section 6, respectively.

2 Background

Over the last 50 years, and especially after the food crises of the 2007-2008 period,

the reduction of PHL has received increasing global attention (Stathers et al., 2020).

This is proved by the fact that the reduction of PHL along the food supply chain

is a specific target of Sustainable Development Goals (SDG), and specifically SDG

12.3. However, any improvement in the reduction of PHL can have positive socio-

economic and environmental implication on many other SDGs. PHL is a sensitive issue

especially for African countries. The African Union Member States have indeed set

the ambitious target under the Malabo Declaration of reducing by 50% overall food

PHL by 2025 (Stathers et al., 2020). Food waste and losses may occur at different

stages of the food chain. FAO (2010) in particular suggests five main steps, along

which food is lost: 1 - Harvesting phase, where food may incur in damages; 2 - Post-

harvesting phase, including handling of harvested foods, drying, winnowing and storage;

3 - Processing phase; 4 - Distribution phase; 5 - Final consumer consumption, where

food may be wasted for instance due to its poor quality or aspect. The first two stages

are particularly critical for developing countries.

There is growing attention in the literature toward a better understanding of the

causes of PHL. There are many reasons leading to PHL, as for instance crops left unhar-

vested in the field, damages during transportation, or the action of pests and bacteria

(Stathers et al., 2020). Delgado et al. (2021a) identify the following six main deter-
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minants of PHL: human capital; climate and environment; infrastructure; technology;

economic incentives; market access. Our paper aims at contributing to the literature

dealing with climate as potential determinant of PHL. Among the scarce number of

contributions dealing with this issue, rainfall, temperature and moisture emerged as

important determinant of PHL. Delgado et al. (2021a) analysing data from a survey on

the determinants of PHL carried out in different developing countries for various crops,

provide evidence that (self reported) adverse climatic condition increase PHL. Ambler

et al. (2018) in analysing data gathered from a survey in Malawi find evidence of a pos-

itive relationship between PHL and rainfall during the post-harvest season for different

crops. The same evidence is emphasized by Tefera (2012) in a review dealing with the

main determinants of maize PHL in Africa. Arah et al. (2016) in a review concerning

tomato postharvest handling practices in developing countries, provide evidence that

high temperatures increase PHL. Similarly, Kasso and Bekele (2018) analysing data

from a survey in an Ethiopian region, suggest that heat and humidity are important

determinants of PHL for horticoltural crops.

Against this background Kaminski and Christiaensen (2014) in analysing data on

self-reported maize losses in three African countries (i.e. Malawi, Uganda and Tanza-

nia), make an attempt to provide a quantification of the effect of temperature on PHL.

They show that is not high temperature per se that increase PHL, but is the combina-

tion of humidity and heat that is detrimental for PHL. The authors find evidence that a

2.3 C° increase in temperature during the wettest quarter of the year is associated with

an increase of PHL of 0.95 percentage points, and 21 percentage point increase in the

probability to incur in PHL. Conversely, average annual temperatures tend to reduce

PHL, as higher temperature accelerate the maize drying phase, and so the probability

to incur in PHL.

Most of the literature discussed in this section dealing with the relationship between

climatic conditions and food losses is based on survey data, where often data on PHL

are self-reported, and where the respondents are simply asked to answer whether or

not the weather is a relevant determinant of PHL. These elements clearly make the

quantification of this relationship quite problematic. Moreover, in many cases, survey

data refer to a narrow context or refer to very few countries, and thus casting some

doubt on the external validity of the results obtained through these analyses. In this

paper we assess the effect of climatic conditions on maize PHL using data on PHL for a

large number of Sub-Saharan countries at the sub-national level, and data on different

weather indicators (e.g. temperature, precipitation, humidity, etc.). Our empirical
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analysis will therefore make an attempt to provide a quantification of the effect of

climatic conditions on PHL. The main pros and cons of our approach are discussed in

the next session.

3 Data

The design of successful strategies to reduce PHL is strictly related to an appropriate

measurement of the extent to which this occurs, especially in low- and middle-income

countries (Delgado et al., 2021b). Several studies have tried to quantify PHL as per-

centage of the total production, presenting estimations that vary considerably from one

to another (Delgado et al., 2021b). This is due to several reasons. First, there is no

consensus on what PHL and Food Waste are. This is especially evident if the objective

is measuring food waste and losses in an international coherent way, as the boundaries

between the two are not always clear (Fabi et al., 2021)1. Second, estimations may

differ substantially if one relies on a macro or micro approach2. The first one considers

aggregated data provided by national authorities, while the second one is often based

on survey data that involve different actors within the food value chain. Each of these

approaches has some disadvantage. The main drawback of the macro approach is the

quality of the data, which are often missing for many regions of the worlds, and for

different stages along the food value chain. The poor representativeness of some lo-

cal realities especially in the low- and middle-income countries does not allow to fully

capture the losses occurred in different stages of the food value chain. In contrast, the

micro approach, being often based on survey, allows having a more comprehensive view

of the losses occurring along the value chain. However, other than very costly, they

are often context specific and the results are difficult to compare across various studies

(Delgado et al., 2021b).

Examples of PHL measurement based on micro approaches in a comparable way

across countries can be found in Kaminski and Christiaensen (2014) and Delgado et al.

(2021b). In the former case, the authors rely on data from the Living Standard Measure-

ment Surveys in three countries (i.e. Malawi, Tanzania and Uganda). The respondent

were asked to indicate whether they incurred in any losses in the maize production,

and, if so, to quantify the proportion of such losses. One of the main drawback of these

1For an in depth discussion on food waste and losses measure see Fabi et al. (2021) and Bellemare

et al. (2017).
2for an extensive discussion on the different PHL estimation methodologies see Delgado et al.

(2021b).
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data is that very few farmers actually declared to have incurred in PHL, leading the

estimated PHL in the overall sample to vary from about 1.4% to 5.9%. Delgado et al.

(2021b) propose three different methods to quantify PHL, which all allow distinguishing

between the total food that is loss and quality deterioration and allow distinguishing be-

tween losses at different production stages. Surveys were conducted in seven countries

(Ecuador, Peru, Honduras, Guatemala, Ethiopia,China, and Mozambique) for 5 crops

(potato, maize, beans, wheat, teff). While the proposed approaches trace a promising

avenue toward a reliable and comparable quantification of PHL along the food value

chain, these data have no time variation, which is an important element to understand

the impact of change in climatic condition on PHL as in our case.

Against this background, our choice fell on the use of PHL data from the African

Postharvest Losses Information System (APHLIS), which represents a network of cereals

and grain experts in SSA countries that has the objective to provide accurate estimate of

PHL in these countries at the regional level. These data are aimed at improving existing

aggregated data on PHL (e.g. FAO data). APHLIS data are pooled considering data

on the literature and data reported by scientists in the considered regions. APHLIS

represents perhaps the most promising international attempt to collect, analyze and

disseminate data on post-harvest grain losses in SSA. The data quantify the percentage

loss for each phase of the post-harvest chain. APHLIS considers the net weight losses in

dry substance occurred after a determined post-harvest activity. In some cases, APHLIS

also considers quality losses: for instance, if the quality of the product is considered

unsuitable for final consumption, this is then considered as an actual weight loss. One

of the main value added of APHLIS is that missing data are replaced by interpolating

existing data on production and weather information. We collect data at the highest

level of disaggregation available, namely at the regional (Administrative 1 - ADM1)

level.

Among different cereals, the analysis focuses on maize, as it represents the most

important staple in SSA countries, thus being a fundamental source of food and income

for million of people in this region (Tefera, 2012). It is worth mentioning that maize is

particularly subject to aflatoxin contaminations, whose chronic exposure, as in many

African countries, is correlated to malnutrition and fatalities. Aflatoxin contamination

is exacerbated by insufficient crop drying and storage, which lead the moisture level

to be well above the optimal level, and thus allowing insect infestations and damages

(Román et al., 2020).

Our analysis considers diiferent weather variables: rainfall, temperature, humidity and
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evaporation. These data are taken from the ERA5-Land dataset (Muñoz Sabater, 2019).

It provides monthly gridded data at 0.1° x 0.1° resolution that we aggregate to match

the administrative boundaries (ADM1). The monthly data have been then redefined

using the harvest and post-harvest season, to be consistent with PHL data. Considering

jointly temperature and precipitation is important to avoid biased estimates of their

effects since the two variables are historically correlated (Auffhammer et al., 2013).

However, to better represent the complexity of the climatic conditions, we also consider

other weather variables, such as solar radiation, evaporation and humidity.

In Table I are presented the summary statistics. Our sample is formed by an

unbalanced panel of 363 provinces (in 36 Sub-Saharan African countries) for 21 years

(2000-2021). The yearly average percentage of the production being lost is about 17.6%,

with a minimum of 13.5% and a maximum of 30.7% and a standard deviation of 2.1%.

The weather variables refers to the harvest and post-harvest season. The average tem-

perature in our sample is about 24 C°. The total precipitation has an average of 313

mm and it presents a large variability among the provinces (standard deviation of 317

mm). We extract from the ERA5-Land dataset two other variables, i.e. surface net

solar radiation and total evaporation. The former is used as a control variable to proxy

the cloud cover. The second one (expressed in absolute terms) represents the accumu-

lated amount of water that has evaporated from the fields’ surface. We use it in the

analysis as an indicator of humidity and, given the high correlation with precipitation,

we use them alternatively. With the same scope, we compute the relative humidity

expressed in percentage using data on surface and dew-point temperatures. Finally,

to consider the combined effect that temperature and humidity can have on PHL, we

compute the Environmental Stress Index (ESI)3 as showed in Moran et al. (2001).

[Table 1 about here.]

4 Empirical Strategy

The data described in Section 3 allow us to exploit the longitudinal structure over a large

sample of sub-national units. This represents a unique opportunity given by APHLIS

data on PHL. However, these data in some cases show low inter-annual variability

within each ADM1 unit. To address potential biases related to this issue, we consider

3The ESI is a measure to approximate the Wet Bulb Globe Temperature (WBGT) and has been

used to estimate the impact of heat stress on crop production in De Lima et al. (2021).
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also as alternative methodologies to quantify the impact of the climatic conditions on

PHL a cross-section analyses.

The first approach we employ is a panel data model. This method allows us to

exploit the within unit weather variability to identify its short to medium-run effect on

PHL. Specifically, we consider the following empirical specification:

PHLijt = β1Xijt + β2X
2
ijt + γj + δt + φixt + εijt (1)

where, PHLijt represents the percentage of maize post-harvest losses in country

i, province (ADM1) j in the year t ; Xijt is a vector of weather variables, which in-

cludes average temperature, precipitation, humidity, evaporation and solar radiation.

All these variables have been considered in the harvest and post-harvest season. The

weather variables enter in our empirical specification as both linear and quadratic, to

control for non linear relationship and, importantly, to allow the effect of weather de-

viation to change with their baseline level, i.e. the climate (see Mérel and Gammans

(2021)). We control also for a large set of fixed effects: γj are province fixed effect;

δt year fixed effects; we also introduce country specific time trends φixt to control for

potential unobservable time-varying country factors. Our fixed effects allow controlling

for deviations in precipitation and temperature, which are likely to be randomly dis-

tributed (Damania et al., 2020). Standard errors are clustered at the Administrative 1

level. 4

Our second approach is in line with the Ricardian literature that exploits cross-

sectional variability of the climatic variables to quantify their relationship with the

economic outcomes (e.g. land value in the first paper by Mendelsohn et al. (1994)).

This method is traditionally considered able to provide an estimate of the long-run

effect of the climate where full adaptation take place. Specifically, we consider the

following empirical specification:

¯PHLij = β1X̄ij + β2X̄
2
ij + β3Z̄ij + γi + εij (2)

where now the dependent variable ¯PHLij is defined as an average over the anal-

ysed period, while the weather variables are defined as 30-years historical norms and

computed over the period 1970-2000. Zij represents a vector of weather variables such

4Note that our main equation 1 is run using a fixed-effect panel data model. Other related articles

in the literature (e.g. Kaminski and Christiaensen (2014) have instead used a censored Tobit model

when dealing with a dependent variable expressed as percentage. We decided not to rely on this

estimator as our dependent variable is not either left or right censored.
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as solar radiation, elevation, access to cities and average GDP of the sub-national unit.

Controlling for such variables is a key element to reduce the possibility of omitted vari-

ables bias. γi is a set of country fixed effects that account for national specific factors.

Finally, εij represents the error terms which is assumed not to be correlated with the

climatic conditions.

5 Main results

In Table II we present the results from the panel data analysis. As a preliminary step,

Column (1) shows the impact of temperature and precipitation on maize production.

A 1°C rise in temperature during the cropping season reduces the output by 15% (the

”Mfx” at bottom of the table shows the average marginal effect). In the case of pre-

cipitation, we find that an increase in the amount of water is beneficial up to a certain

point (about 1230 mm) where a further rise would reduce the output. These results

are consistent with previous literature and show how substantial is the impact of a

temperature shock on sub-Saharan African crop production.

In columns from 2 to 4 we presents the results concerning the weather effect on

PHL. In Column (2) we show the estimates of temperature and precipitation on PHL.

In both cases, the average marginal effect is negative but the magnitude is considerably

small. An increase in temperature by 1°C will reduce PHL of about 0.2 percentage

points (pp). This is coherent with the fact that higher temperature allows a better

drying of the seeds. Although the coefficients associated with precipitation are not

significant, their signs are unforeseen, since we expect that higher level of precipitation

would induce more PHL. Solar radiation presents significant coefficients but of negligible

size.

To have a better understanding of these findings, we consider two alternative vari-

ables to precipitations. In Column (3) we show the effect of temperature and humidity

on PHL. In the first case the average marginal effect is still negative but not signifi-

cant (-0.03). Contrary, humidity shows a positive effect, indicating that a 1% (sd 17%)

increase in relative humidity would increase PHL by 0.07 pp. A similar result occurs

when considering the total evaporation (Column 4), where the associated coefficient is

also positive and statistically significant. In this case, an increase of 1 m (sd 0.9%) in

evaporated water from the fields would induce PHL to rise by 0.6 pp. The overall re-

sults suggest that higher level of humidity leads to a more pronounced deterioration of

maize. This is likely due to the fact that humidity is a core determinant of the moisture
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content of maize (Tefera, 2012) and a key factor for biological activity (Coradi et al.,

2020)). However the magnitude of this effect is considerably small, especially when

compared with the weather effects on production.

[Table 2 about here.]

In Table III, we present the results from the Ricardian-style analysis. In Column

(1) we observe that temperature does not have any significant effect on PHL. Contrary,

the coefficients associated with precipitation are significant but the implied average

marginal effect has a very low magnitude (0.001 pp). Column (3) and (4) show the

impact that humidity and evaporation have on PHL, as an alternative to precipitation.

Again, the associated coefficients for their marginal effect are positive and significant

(0.02 and 0.39 pp) but their size is lower than the one previously estimated in the

panel approach. Finally, in Column (4) we present an estimation of the effect of the

Environmental Stress Index (ESI) on PHL. As mentioned in Section 4, this index allows

us the consider the heat stress caused by the combination of both temperature and

humidity. The associated coefficient for the average marginal effect is positive and

significant (0.13) showing how the interaction between the two variable can translate

into an higher detrimental effect on PHL (even if still a small one).

Looking at the control variables, solar radiation is never statistically significant.

The coefficient associated with the access to cities always shows a positive sign, implying

that the more time is needed to reach the closest town the higher is the PHL. However,

the coefficient is not statistically significant at standard level. The elevation variable

shows opposite coefficient and almost never significant. Potential yield has a positive

coefficient, implying that the more suitable the land is to produce maize the higher

would be also the consequent losses. Finally, the associated coefficient to GDP is

always positive but not statistically significant.

Overall, these results are coherent with the ones estimated with the panel data

approach. Temperature per se is not a determinant of PHL, although its interaction

with humidity can translate into higher losses. Indeed, we find that humidity and other

proxies for water vapour in the air are associated with higher PHL, even if these effects

are considerably small.

[Table 3 about here.]
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6 Conclusions

In the present paper we show the first attempt to empirically estimate the impact of

climatic conditions on PHL for an extensive sample of countries using sub-national

data. In particular we highlight the importance of climatic conditions, and humidity in

particular, in affecting maize PHL in SSA. The results stress one more time the impor-

tance of developing more efficient post-harvest strategies in these countries. Effective

post-harvest management practices may indeed not only improve food availability, but

they could also reduce pressure on natural resources, which should be instead even more

exploited to increase food production in response to the impressive population growth

occurring in these countries.

References

Abass, A. B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., and Bekunda, M.

(2014). Post-harvest food losses in a maize-based farming system of semi-arid savan-

nah area of tanzania. Journal of stored products research, 57:49–57.

Ambler, K., De Brauw, A., and Godlonton, S. (2018). Measuring postharvest losses at

the farm level in malawi. Australian Journal of Agricultural and Resource Economics,

62(1):139–160.

Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K., and Amaglo, H. (2016).

Postharvest handling practices and treatment methods for tomato handlers in devel-

oping countries: A mini review. Advances in Agriculture, 2016.

Auffhammer, M., Hsiang, S. M., Schlenker, W., and Sobel, A. (2013). Using Weather

Data and Climate Model Output in Economic Analyses of Climate Change. Review

of Environmental Economics and Policy, 7(2):181–198.
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Table I: Descriptive Statistics

N Mean SD Min Max

Total Production (t) 7583 121,046.31 280,867.00 1.00 4,819,206.00
Losses (t) 7580 22,669.26 53,063.57 1.00 1,083,961.00
Losses (%) 7580 17.62 2.07 13.49 30.73
Temperature (°C) 8463 23.99 4.51 2.89 33.35
Precipitation (mm) 8463 312.66 317.15 0.17 2,428.46
Solar Radiation (kJ m−2) 8463 16,223.41 1,696.57 9,026.95 20,246.60
Total Evaporation (m H20 equivalent) 8463 1.76 0.92 0.04 4.24
Relative Humidity (%) 8463 53.45 17.33 14.32 87.18
Environmental Stress Index (ESI) 8463 20.71 4.26 1.31 27.03

Countries 36
Provinces (ADM1) 363
Years 21 2000 2020
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Table II: Impact of the Weather on Output and Post-Harvest Losses - Panel Data
Approach

(1) (2) (3) (4)
Log of Production Losses (%) Losses (%) Losses (%)

Temperature (°C) -0.308∗ 0.051 0.245∗∗ 0.110
(0.164) (0.115) (0.122) (0.113)

Temperature2 0.003 -0.005∗∗ -0.006∗∗ -0.004
(0.003) (0.003) (0.003) (0.003)

Precipitation (mm) 4.29 x 10−4∗∗∗ -7.56 x 10−4

(0.000) (0.000)
Precipitation2 -1.74 x 10−7∗∗∗ -2.41 x 10−7

(0.000) (0.000)
Humidity (%) 0.092∗

(0.047)
Humidity2 -2.31 x 10−4

(0.000)
Evaporation (m) 0.932∗∗

(0.379)
Evaporation2

Solar radiation (kJm−2) 4.88 x 10−4∗∗ 9.77 x 10−4∗∗∗ 0.001∗∗∗ 7.61 x 10−4∗∗

(0.000) (0.000) (0.000) (0.000)
Solar radiation2 1.27 x 10−8∗∗ 3.68 x 10−8∗∗∗ -2.64 x 10−8∗∗ -2.45 x 10−8∗∗

(0.000) (0.000) (0.000 (0.000)

Mfx Temperature -0.154∗∗∗ -0.200∗∗∗ -0.030 -0.070
Mfx Solar Radiation 7.52 x 10−5∗∗ 2.16 x 10−4∗∗∗ 1.78 x 10−4∗∗∗ -3.2 x 10−5

Mfx Precipitation 1.50 x 10−4∗ -0.001∗∗

Mfx Humidity 0.066∗∗∗

Mfx Evaporation 0.593∗∗∗

Observations 7583 7580 7580 7580
R2 0.944 0.479 0.480 0.479

Notes: Estimated model as Equation (1), with ADM1 and year Fixed Effects and country-
specific time trend. Average Marginal Effect (Mfx) computed with Delta method. Standard
errors are clustered at ADM1 level. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table III: Impact of the Weather on Post-Harvest Losses - Ricardian Approach

(1) (2) (3) (4)
Losses (%) Losses (%) Losses (%) Losses (%)

Temperature (°C) -0.016 -0.108 -0.125
(0.151) (0.154) (0.163)

Temperature2 1.64 x 10−4 0.003 0.002
(0.003) (0.003) (0.003)

Precipitation (mm) 0.002∗∗∗

(0.001)
Precipitation2 -1.06 x 10−6∗∗∗

(0.000)
Humidity (%) 0.050

(0.038)
Humidity2 -2.3 x 10−4

(0.000)
Evaporation (m) 1.035∗∗∗

(0.371)
Evaporation2 -0.169∗∗

(0.083)
ESI -0.133

(0.163)
ESI2 0.006

(0.004)
Solar radiation (kJm−2) 1.53 x 10−7 3.25 x 10−7 2.33 x 10−7 1.01 x 10−7

(0.000) (0.000) (0.000) (0.000)
Solar radiation2 -3.77 x 10−15 -8.36 x 10−15 -7.08 x 10−15 -3.77 x 10−15

(0.000) (0.000) (0.000) (0.000)
Access Cities (min) 2.71 x 10−4 2.96 x 10−4 2.67 x 10−4 2.16 x 10−4

(0.000) (0.000) (0.000) (0.000)
Elevation (m) -3.6 x 10−5 2.02 x 10−4 -1.57 x 10−4 6.51 x 10−4 ∗∗

(0.000) (0.000) (0.000) (0.000)
Potential Yield 5.88 x 10−5∗∗ 5.97 x 10−5∗∗ 3.63 x 10−5 7.68 x 10−5∗∗∗

(0.000) (0.000) (0.000) (0.000)
log GDP 0.106 0.063 0.077 0.101

(0.069) (0.067) (0.071) (0.069)

Mfx Temperature -0.008 0.017 -0.029
Mfx Sol Rad 3.18 x 10−8 5.77 x 10−8 6.14 x 10−9 -2.02 x 10−8

Mfx Precipitation 0.001∗∗∗

Mfx Humidity 0.024∗∗∗

Mfx Evaporation 0.394∗∗∗

Mfx ESI 0.127∗∗∗

Observations 363 363 363 363
R2 0.687 0.691 0.689 0.684

Notes: Estimated model as Equation (2), with country Fixed Effects. Average Marginal
Effect (Mfx) computed with Delta method. Standard errors are clustered at ADM1 level.
Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01
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