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Can Remotely-Sensed Vegetation Health Indices Increase the Hedging-Effectiveness of 

Index Insurance? – Insights from Germany 

Abstract 

Satellite-retrieved vegetation health (VH) indices are under active consideration to be integrated 

into weather index insurance to reduce the basis risk and increase the attractiveness to farmers. 

The objective of this study is to obtain a deeper understanding of the hedging effectiveness 

(HE) of the satellite-retrieved VH indices. By using winter wheat yield records from 79 farms 

in Northern and Eastern Germany over 20 years, we designed index insurance based on three 

satellite indices to explore their HE: The Vegetation Condition Index (VCI), the Temperature 

Condition Index (TCI) and the Vegetation Health Index (VHI) with a spatial resolution of 1x1 

km. As the benchmark, a meteorological index related to precipitation is employed. The results 

indicate that, on average, the TCI and VHI outperform the benchmark index in a statistically 

significant way. However, considerable differences across regions are observed. In particular, 

the highest HE, and therefore basis risk reduction, was found for regions with sandy soils in 

Eastern Germany. Insurers can be advised to accelerate the research and development of 

satellite-based index insurance in Eastern Germany. By considering our insurance design, 

products with low transaction costs and therefore comparatively low loading factors can be 

offered to farmers.  
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1. Introduction 

Climate change puts pressure on the risk management of farms worldwide to secure 

agricultural incomes (Finger and El Benni, 2021). In Western Europe, catastrophic droughts 

and heat waves are occurring more frequently and affecting crop yields (Harkness et al., 2020; 

Wreford and Topp, 2020). Drought has already been the most economically relevant production 

risk for crops in Germany, causing an average annual damage in winter wheat production of 

EUR 23 million (Schmitt et al., 2022). To cope with the increasing risk of drought, weather 

index insurance is widely discussed as a means to mitigate economic losses for farmers. Index 

insurance overcomes the problem of information asymmetry and enables payouts to be 

determined quickly, making it cost-efficient. Furthermore, adverse selection and the risk of 

moral hazard can be tackled (Barnett and Mahul, 2007).  

Since its introduction in 2015, the availability and variety of index insurance for agricultural 

purposes has grown in Germany (e.g. Allianz Agrar, 2024; Vereinigte Hagel, 2024). The 

underlying index mainly refers to weather station data such as precipitation or temperature 

(Leblois and Quirion, 2013). Nevertheless, farmers’ uptake and intention to use drought 

insurance remains low (Nordmeyer and Mußhoff, 2023). Basis risk is known to be one of the 

main inhibiting factors of demand. Basis risk has several dimensions. For example, the 

correlation between the underlying index of an index insurance and the yield on a specific field 

is imperfect and therefore cannot reflect the yield loss perfectly, causing a basis risk of design 

(Heimfarth and Musshoff, 2011). In addition, a rainfall event occurs at the referring weather 

station, but not at the respective field, creating a geographical basis risk. Despite a dense 

network of weather stations in Germany, this kind of idiosyncratic event might be missed. 

Addressing this problem is crucial for the future adoption of index insurance products by 

farmers (Clarke, 2016). 
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The digitalization of the agricultural sector increases the availability of long-term and site-

specific data which can be used to design better index insurance (Walter et al., 2017). 

Researchers have turned their attention to satellite data to explore their potential to reduce the 

basis risk and thereby increase the hedging effectiveness (HE) of index insurance. Nowadays, 

satellites provide data globally, regardless of the density of weather stations (Quiring and 

Ganesh, 2010). This reduces transaction costs for multinational insurance providers because the 

information is not restricted to national borders (Vroege et al., 2021). In addition, farmers are 

interested in the integration of satellite data in index insurance in general (Nordmeyer and 

Musshoff, 2023).  

Satellites can provide information regarding soil moisture or the crop's health status based 

on biomass data. For example, the normalized difference vegetation index (NDVI) describes 

the density and vigor of green biomass and is thus an indicator of the health of the vegetation 

(Leblois and Quirion, 2013). While the NDVI is highly correlated to biomass assessment, an 

inconsistent relationship to crop yield was identified in Germany (Panek and Gozdowski, 2020). 

As a result, the NDVI is primarily investigated for use in forage index insurance (Turvey and 

Mclaurin, 2012; Vrieling et al., 2014). To overcome this, the relationship between crops and 

satellite-retrieved vegetation health (VH) indices defined by Kogan (1990) are under active 

discussion (Bokusheva et al., 2016; Kern et al., 2018; Pei et al., 2018). Three VH indices are 

of major interest: The Vegetation Condition Index (VCI), the Temperature Condition Index 

(TCI), and the Vegetation Health Index (VHI). The VCI is a relative indicator that shows how 

a specific crop develops between the minimum and maximum potential of a particular region, 

the TCI is a relative indicator of favorable or unfavorable thermal conditions at a specific 

location, while the VHI is a combination of both indices (Kogan et al., 2016).  

While the HE of index insurance based on satellite-retrieved soil moisture has received 

considerable research attention (Vroege et al., 2021), only limited knowledge regarding the HE 
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of satellite-retrieved VH indices exists. At present, the HE of VH indices in the German context 

has been previously investigated by Möllmann et al. (2019) and Kölle et al. (2022). Möllmann 

et al. (2019) considered eleven arable farms in Northeastern Germany in their pioneer study, 

while Kölle et al. (2022) investigated the basis risk reduction of satellite-retrieved VH indices 

for three farms in Northeastern Germany, distinguishing between the farm and field level. 

Although the authors provide initial insights suggesting that satellite-based VH indices can 

enhance HE and reduce basis risk, their results are limited in terms of sample size and regional 

focus. It remains to be investigated how the consideration of the critical phenological growth 

stages as well as a higher spatial resolution of the VCI, TCI, and VHI affects the HE as this has 

not received attention so far. In addition, the HE across different soil types is still unknown. 

Investigating the HE on a larger scale by considering different soil and climate conditions 

throughout a country is crucial to providing sufficient guidance to insurers in designing index 

insurance and to policymakers in designing agricultural policy. Therefore, this study explores 

the HE of satellite-retrieved VH indices in different regions with heterogeneous climate and 

soil conditions compared to a benchmark index. The coverage period is defined by phenological 

growth stages. 

For our purpose, we use a large data set of winter wheat yield records from 79 farms over 

20 years. To design index insurance, we use publicly available MODerate-resolution Imaging 

Spectroradiometer (MODIS) satellite data. In particular, we designed index insurance based on 

the three satellite-retrieved VH indices: The VCI, the TCI, and VHI with a spatial resolution of 

1x1 km. As the benchmark, a precipitation index based on meteorological observations 

provided by the German Meteorological Service is employed (Deutscher Wetterdienst, 2020).   

To the best of our knowledge, this is the first study that explicitly investigates the HE of index 

insurance based on satellite-retrieved VH on a large scale and across different regions for winter 

wheat. This is of particular interest as the share of German farmers who have index insurance 
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remains very low with only 1-2% (Nordmeyer and Mußhoff, 2023). This is unique for such a 

developed country even though the discussion of index insurance has become more prevalent 

after the catastrophic drought in 2018 as it led to substantial disaster payments to farmers 

(Bundesministerium für Ernährung und Landwirtschaft, 2018). Yet, the debate is relevant since 

recent research has shown that German farmers prefer satellite-based index insurance over 

precipitation-based (Nordmeyer et al., 2023). Furthermore, winter wheat is the most important 

crop in Germany (Destatis, 2021). Thus, our results are of interest to insurers who are designing 

index insurance and to policymakers considering policy intervention. Researchers focusing on 

the performance of index insurance can also benefit from this study. The structure of this article 

is as follows: In section 2, we describe the study area of our case study as well as the satellite 

and meteorological data used. Section 3 provides a detailed description of the applied 

methodology. In Section 4, we present and discuss the results, before we draw our main 

conclusions in Section 5. 

2. Study area and data 

To investigate the HE of the satellite-retrieved VH indices, we use balanced winter wheat 

yield records from 79 farms in Northern and Eastern Germany between 2000 and 2019, which 

highly exceeds datasets used in previous literature (Kölle et al., 2022; Möllmann et al., 2019). 

The data were provided by an insurance broker. More specifically, the study area includes the 

federal states of Brandenburg, Lower Saxony, Saxony, Saxony-Anhalt, and Thuringia as well 

as single farms from Mecklenburg-Western Pomerania and Schleswig-Holstein. Around all 

these federal states, winter wheat is the most important winter crop. According to differences 

in latitude and altitude, the harvest period of winter wheat takes place between mid-July and 

mid-August. Across the whole study region, the long-term annual precipitation ranges from 557 

mm to 788 mm which is lower than the long-term average annual precipitation for Germany 

(791 mm) (Deutscher Wetterdienst, 2022). Therefore, we cover a wide range of different 
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regions and arable farming conditions in Germany. The locations of the 79 farms under 

investigation are shown in Figure I.  

 
Figure I Locations of the farms under investigation. Farms are indicated as black points. 
Source: Own illustration  

Since the farms are located in different regions of Germany, the climate and soil conditions 

vary considerably. For a better comparison of the farming conditions, we consider the 

agricultural area segmentation suggested by Roßberg et al. (2007). Based on area segmentation, 

the authors defined soil-climate regions across Germany. The soil-climate regions allow to 

assign farms to smaller areas as they are similar in terms of soil conditions and water holding 

capacity as well as climate conditions. Given that the soil-climate regions are relatively small, 
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there are some soil-climate regions with only one or only a few farms. As this would lead to 

biased results, we build on findings by Dachbrodt-Saaydeh et al. (2019) who clustered the soil-

climate regions into broader regions for a regional evaluation and analysis of pesticide use 

intensity. Within these clusters, arable farming deals with similar conditions. A major 

advantage of this segmentation is that it does not depend on federal-state borders. The clusters 

defined by Dachbrodt-Saaydeh et al. (2019) are presented in Figure II.  

 
Figure II Clusters for the regional evaluation and analysis of pesticide use intensity (CEPI) in 

arable crops  
Source: (Dachbrodt-Saaydeh et al., 2019) 
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The 79 farms in our case study are located in cluster A (16), cluster B (27), cluster E (18) 

and cluster F (18). Hence, we cover four out of six clusters. Cluster A covers the area of 

Brandenburg, Mecklenburg-Western Pomerania, and parts of Saxony and Saxony-Anhalt. 

Cluster A is characterized by the lowest soil quality and lowest precipitation but the highest 

mean daily temperatures during the vegetation period. Particularly, the low water-holding 

capacity of the sandy soils increases the high variability in winter wheat yield due to heat and 

drought events. In addition, a further decrease in precipitation during the vegetation period and 

an increase in temperatures leading to increased evaporation due to climate change is expected 

in this region (Lüttger and Feike, 2018). 

Cluster B is characterized by the highest soil quality compared to the other clusters, but the 

annual precipitation is lower than in clusters E and F. In addition, comparatively high daily 

mean temperatures are observed. Cluster B covers the southern part of Lower Saxony and parts 

of Saxony, Saxony-Anhalt, and Thuringia. The other farms in Lower Saxony belong to cluster 

E. The soil quality in this area is low (similar to cluster A), however, the amount of precipitation 

during the vegetation period is higher compared to other clusters. The fourth cluster of 

relevance in our case study is Cluster F. Cluster F is characterized by lower soil quality 

compared to Cluster B, but higher compared to Cluster A and E. Furthermore, this cluster is 

characterized by higher precipitation compared to other clusters and lower daily mean 

temperatures. due to higher altitude on average given that this area includes low mountain 

ranges. 

Table I shows the winter wheat yield statistics for all farms and the different clusters. The 

average winter wheat yield is 72.12 dt/ha with a standard deviation of 12.67 dt/ha. The highest 

yields were observed for clusters  (76.47) and B (75.85), and the lowest for farms in cluster A 

(60.87). The highest standard deviation was also observed for cluster A (14.73).  



9 
 

Table I Summary statistics of winter wheat yields across different clusters from 2000-2019 in 

dt/ha 
 

N Mean Min Max SD  CV 

Full sample 79 72.12 25.70 100.60 12.67 17.6% 

Cluster A 16 60.87 25.70 99.00 14.73 24.2% 

Cluster B 27 75.85 35.98 100.60 10.93 14.4% 

Cluster E 18 76.47 41.10 97.60 9.07 11.9% 

Cluster F 18 72.19 40.30 97.60 9.79 13.6% 

Notes: SD indicates standard deviation. CV indicates the coefficient of variation. 

Source: Own illustration 

With respect to the VH indices, we compute three satellite indices: VCI, TCI, and VHI. The 

calculation of the VCI involves the use of the Enhanced Vegetation Index (EVI). Similar to the 

NDVI, the EVI serves as a satellite index that reflects changes in green plant biomass 

throughout the vegetation period (Salem et al., 1995). The EVI measures the overall quantity 

of green biomass within each pixel of a satellite image over a specified period. In comparison 

to the NDVI, the EVI exhibits greater sensitivity to areas with elevated biomass (Didan et al., 

2015; Kölle et al., 2021).  

The VCI is computed through the normalization of EVI values using the absolute minimum 

and maximum values persisting throughout the entire observation period 2000-2019. This 

normalization process mitigates the influences of natural site conditions such as soil and 

topography, which can affect EVI values differently. As a result, identical EVI values require 

distinct interpretations based on the ecological potential of the region. The absolute maximum 

and minimum EVI values for each pixel encompass extreme weather conditions, serving as 

reference points that delineate the minimum or maximum limitations of yield capacity specified 

as the ecosystem. In addition, the VCI signifies the extent to which prevailing weather 

conditions exploit the ecological potential of the region (Kogan, 1995). The VCI is determined 

by the minimum (𝐸𝑉𝐼𝑚𝑖𝑛) and maximum (𝐸𝑉𝐼𝑚𝑎𝑥) EVI values for each 1x1 km pixel 

throughout the study period and for each satellite image on day 𝑑 as follows: 
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𝑉𝐶𝐼𝑑 = 100 ×
𝐸𝑉𝐼𝑑 − 𝐸𝑉𝐼𝑚𝑖𝑛

𝐸𝑉𝐼𝑚𝑎𝑥 − 𝐸𝑉𝐼𝑚𝑖𝑛
 (1) 

The VCI is represented on a scale from 0 to 100 (Kogan 1995). Consequently, higher VCI 

values indicate vital vegetation that is not characterized by moisture stress. In contrast, dry years 

are characterized by lower green biomass and correspondingly lower VCI values, which are 

caused by thermal vegetation stress due to drought. However, other factors, such as plant 

diseases or insects, can also influence the amount of green biomass. We calculated VCI values 

with a spatial resolution of 1x1 km and a temporal resolution of 16 days. 

The TCI is calculated by considering Land Surface Temperature (LST) values within the 

defined study period in every year with the index-specific temporal resolution of d as follows: 

𝑇𝐶𝐼𝑑 = 100 ×
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑑

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
 (2) 

where the 𝐿𝑆𝑇𝑚𝑖𝑛 and 𝐿𝑆𝑇𝑚𝑎𝑥 correspond to the minimum and maximum LST values during 

the defined coverage period in each year between 2000-2019 (Unganai and Kogan, 1998). 

Corresponding to the VCI, values close to 0 reflect thermal vegetation stress, and values close 

to 100 reflect that the maximum benefit has been derived from the given geographical resources 

of the area of the respective farm. We calculated TCI values with a spatial resolution of 1x1 km 

and a temporal resolution of 8 days.  

To calculate the VHI in year, the average value of all satellite images of both indices during 

a defined coverage period as suggested by Kogan et al. (2016) is used as follows: 

𝑉𝐻𝐼 = 𝛼 × 𝑉𝐶𝐼 + (1 − 𝛼) × 𝑇𝐶𝐼 (3) 

where 𝛼 depicts the weighting coefficient. Similar to Möllmann et al. (2019), we assume equal 

weights of the VCI and the TCI (𝛼=0.5) as suggested by Kogan et al. (2016). This can be 

assumed given that the relative contribution of temperature and moisture is not exactly known. 

Given the different temporal resolutions of the satellite indices, the values of the VCI and TCI 

for each farm were derived by considering the average values of all observations for both 
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indices in the relevant coverage period in every year. To derive the three indices on the farm 

level, we include five or even more 1x1 km pixels to address the lack of information on the 

exact geographic position of the respective fields. Since we are only interested in pixels 

covering arable land, we use Google Earth to detect lakes, forests, and villages and mask them 

out by purely focusing on pixels covering arable land. 

3. Methodology 

To investigate the HE, we designed realistic, but not yet offered index insurance products 

for each of the 79 farms. Particularly, we designed index insurance based on the three satellite 

indices. As the benchmark, an index insurance related to precipitation is employed (R). In 

contrast to the VH indices, the precipitation-based index insurance refers to the sum instead auf 

of the average to be in line with currently available products (e.g. Vereinigte Hagel, 2024). 

Particularly, the precipitation-based index insurance was defined as the farm-individual average 

sum of daily precipitation of the nearest three weather stations during the coverage period of 

the insurance in every year. Accordingly, the precipitation index 𝑅𝑡,𝑖 is defined as follows: 

𝑅𝑡,𝑖 = ∑ 𝑅𝑑
𝑡,𝑖

𝑛

𝑑=1

 (4) 

where 𝑅𝑑
𝑡,𝑖

 depicts the sum of precipitation on day 𝑑 of year t reported for the area of farm i. 

Given that the satellite indices are calculated as values between 0 and 100, we use the average 

instead of the sum. Hence, the 𝑉𝐶𝐼𝑡,𝑖 and 𝑇𝐶𝐼𝑡,𝑖 were calculated by considering:  

  

𝑉𝐶𝐼𝑡,𝑖 =
1

𝑛
 ∑ 𝑉𝐶𝐼𝑑

𝑡,𝑖

𝑛

𝑑=1

 (5) 

𝑇𝐶𝐼𝑡,𝑖 =
1

𝑛
 ∑ 𝑇𝐶𝐼𝑑

𝑡,𝑖

𝑛

𝑑=1

 (6) 
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where  𝑉𝐶𝐼𝑑
𝑡,𝑖 and 𝑇𝐶𝐼𝑑

𝑡,𝑖 indicate the value of the vegetation indices for farm 𝑖 at observation 𝑑 

in year t. Considering the different temporal resolutions of the VCI and TCI, the 𝑉𝐻𝐼𝑡,𝑖 is 

calculated as the weighted average of all observations of the TCI and the VCI on farm 𝑖 in year 

t:  

𝑉𝐻𝐼𝑡,𝑖 = 𝛼 × 𝑉𝐶𝐼𝑡,𝑖 + (1 − 𝛼) × 𝑇𝐶𝐼𝑡,𝑖  (7) 

Following Dalhaus et al. (2018), we focus on the critical phenological phases of winter wheat 

as the coverage period of the index insurance for each farm individually. With respect to winter 

wheat, the most vulnerable time frame for damage by water deficit is between stem elongation 

and the beginning of milk ripeness (Acevedo et al., 2002; Conradt et al., 2015). The database 

is provided by the German Meteorological Service and is based on real phenology reports of 

voluntary observers from over 1200 active stations throughout the country. Based on that, the 

“day of the year” of the crop-specific growth phases can be determined to define the farm-

specific coverage period in every year. Descriptive statistics of the indices for all farms and 

clusters using phenological time frames can be found in Table A1 of the appendix.  

We designed the index insurance products as European put-options. Hence, the farmer 

receives a payout if the respective index (𝐼𝑡,𝑖) falls below a pre-defined threshold called strike-

level (𝑆𝑖). Thus, the payout (PO) is calculated as  𝑃𝑂𝑡,𝑖
𝑝𝑢𝑡 = max  (𝑆𝑖 − 𝐼𝑡,𝑖) × 𝑇𝑖 . The term 𝑇𝑖 

represents the tick size representing the payment per unit change in the difference between 𝐼𝑡,𝑖 

and 𝑆𝑖.  

As suggested by Dalhaus and Finger (2016), we apply a farm-specific regression framework 

for estimations:  

𝑦𝑖,𝑡 = 𝛽0𝑖,𝑡,𝑣
+  𝛽1𝑖,𝑡,𝑣

× 𝐼𝑖,𝑡,𝑣 + 𝜀𝑖,𝑡,𝑣 (8) 

where 𝑦𝑖,𝑡 indicates the winter wheat yield reported by farm i in year t. The regression 

coefficients 𝛽0𝑖,𝑣
 and 𝛽1𝑖,𝑣

 represent the farm individual intercept and slope for the different 
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indices v and 𝐼𝑖,𝑣 depicts the index value at farm i in year t for the index v. The error term 𝜀𝑖,𝑡,𝑣 

includes the farm, year and index-specific basis risk which can lead to a mismatch between the 

crop yield and the index value. Given that our research purpose is related to heavy drought-

related yield losses, we follow Conradt et al. (2015) and apply quantile regressions similarly to 

Möllmann et al. (2019) and Vroege et al. (2021). In doing so, we determine the relationship 

between VH indices and lower yields individually.  

For insurance purposes, quantile regression enables the indemnification of low-yield events 

and leads to a more appropriate downside risk reduction properties of the insurance contract 

(Conradt et al., 2015). In particular, quantile regression allows to estimate 𝛽0𝑖,𝑣
 and 𝛽1𝑖,𝑣

 on 

𝐼𝑖,𝑣 on the lower bound of yield observations to calculate farm-individual strike levels and tick 

sizes. Furthermore, quantile regression is not affected by normally distributed data and is more 

robust to outliers compared to ordinary least squares regression. Thus, quantile regression is 

highly suitable for our research aim. Quantile regression minimizes the sum of absolute 

distances between fitted values 𝐼𝑖,𝑣 ×  𝛽1𝑖,𝑣
 and observed values 𝑦𝑖,𝑡 with a specific emphasis 

on weighting downside yield events by (1−τ) and upward residuals by τ as follows: 

𝛽(𝜏) =  arg min
𝛽𝜖ℝ

 [𝜏 × ∑ |𝑦𝑖,𝑡 − 𝐼𝑖,𝑣 ×  𝛽1𝑖,𝑣
|

𝑦𝑖<𝐼𝑖,𝛽𝑖

+ (1 − 𝜏) × ∑ |𝑦𝑖,𝑡 − 𝐼𝑖,𝑣 × 𝛽1𝑖,𝑣
 |

𝑦𝑖<𝐼𝑖,𝛽𝑖

] 

(9) 

In line with relevant literature, the quantile of interest is the lowest 30 per cent of the yield 

distribution (𝜏 = 0.3). Similar to Vroege et al. (2021), we apply a quantile approach to calculate 

the strike level 𝑆𝑖,𝑣 in contrast to Conradt et al. (2015) who used the average winter wheat yield. 

Particularly, we use the quantile regression coefficients 𝛽0𝑖,𝑣
 and 𝛽1𝑖,𝑣

 to define the strike level 

by: 
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𝑆𝑖,𝑣 =
𝑞0.3(𝑦𝑖) −  𝛽0𝑖,𝑣

𝛽1𝑖,𝑣

 (10) 

where 𝑞0.3 reflects the focus on the 30 per cent percentile value of the winter wheat yield 

distribution of a farmer i. The tick size 𝑇𝑖 was equal to the slope of the quantile regression (𝛽1𝑖,𝑣
) 

multiplied by a constant price (P). Following Vroege et al. (2021), a strike level and tick size 

were only calculated in cases where a positive relation between the index and yields indicated 

by a positive value of 𝛽1𝑖,𝑣
 was identified for the lower tail of the yield distribution. In the case 

of a negative value of 𝛽1𝑖,𝑣
, corresponding to a negative relation, drought cannot be seen as a 

major production risk for the farm and a premium calculation under actuarially fair conditions 

would not be possible.  

However, our study aims to investigate the HE under a fair premium scenario. Consequently, 

we applied the burn analysis to identify the actuarially fair premium (Heimfarth and Musshoff, 

2011; Heimfarth et al., 2012; Taib and Benth, 2012). We calculated the payouts considering 

strike level and tick size for all indices based on the historical farm-specific data. Finally, the 

fair premium (𝑃𝑅𝑖) was set as the average payout observed (Musshoff et al., 2011). We use the 

farmers’ winter wheat revenue distribution to examine the HE. In particular, the revenue per 

hectare (𝜋𝑡,𝑖) was defined as follows: 

𝜋𝑡,𝑖 = 𝑃 × 𝑦𝑡,𝑖 + 𝑐𝑖 × 𝑃𝑂𝑡,𝑖 − 𝑐𝑖 × 𝑃𝑅𝑖  (11) 

where 𝑐𝑖 describes the optimal number of insurance contracts bought by the farmers to reach 

the highest HE. We used a constant level of winter wheat price at a level of EUR 200 per ton. 

Following Bucheli et al. (2021) and Möllmann et al. (2019), we detrended the winter wheat 

yield 𝑦𝑡,𝑖 by assuming a linear regression as the methodological approach. The HE was obtained 

by comparing the farmers' revenue without index insurance and with the index insurance 

product designed by us. In accordance with Conradt et al. (2015), we use the expected shortfall 

as a risk reduction indicator. The expected shortfall indicates the average of losses below a 
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defined value at risk (k), which is represented by the 0.3 quantile of the yield distribution. The 

expected shortfall 𝐸𝑆 is calculated by: 

𝐸𝑆𝛼 =
1

1 − 𝛼
∫ 𝑞𝑘𝑑𝑘,

1

𝛼

 (12) 

where 𝛼 depicts the confidence interval. With respect to the quantile of interest (𝜏 = 0.3), we 

set k=0.3. We allocated equal weights of 1/(1 − 𝛼) to all loss quantiles, with all non-tail 

quantiles showing a weight of zero (Dowd et al., 2008). Hence, the HE was calculated by the 

change in the expected shortfall for every farm with and without index insurance. Finally, the 

non-parametric Wilcoxon rank sum test was used to test whether statistically significant 

differences in HE between the VH indices and the benchmark could be identified. A major 

advantage of this test is that it does not require normally distributed data. 

4. Results and discussion 

Following Conradt et al. (2015), we focus on the lower bound of the winter wheat revenue 

distribution. As mentioned, a positive relationship between the respective index and the winter 

wheat yield in the 0.3 quantile was the precondition to be incorporated in our analysis to 

calculate fair premiums. A drought risk can be identified at between 65% (51 farms) for the 

VCI and 96% (76 farms) for the TCI. For the VHI, a drought risk was identified for 66 farms 

and concerning the benchmark index for 62 farms. Across the different indices, the highest 

correlation coefficient was estimated between the TCI and winter wheat, followed by the VHI. 

Particularly, the correlation coefficient was 0.42 on average for the TCI and 0.39 for the VHI. 

The lowest average correlation coefficients were found between the VCI and the winter yield 

(0.24) and between precipitation and winter wheat (0.27). This is in line with the findings of 

Möllmann et al. (2019). Most notably, our estimates show considerable differences across the 

farms and clusters. The highest correlation for all indices was found in cluster A. For 

perspective, the correlation coefficient between the TCI and winter wheat was 0.60, between 

the VHI and winter wheat 0.55, between precipitation and winter wheat 0.41, and for the VCI 
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and winter wheat 0.33. On the contrary, the lowest correlation coefficients for all indices were 

estimated in cluster E. More precisely, the correlation coefficients were 0.16 for the VCI, 0.33 

for the TCI, 0.31 for the VHI, and 0.21 for precipitation.  

With respect to the insurance contracts, the average coverage period of the index insurance 

was 63 days on average across all farms. Statistics regarding the insurance premiums for the 

different indices and across the four clusters can be found in Table II. Based on the burn-rate 

analysis, the HE was calculated under a fair premium scenario. Consequently, overall revenues 

are equal for the uninsured and the insured scenarios.  

Table II Insurance premiums statistics in EUR  

 Mean SD  Max  Min Insured 

farm 

Share 

insured 

farm 

Full sample       

VCI 34.30 27.40 114.68 0.33 51 0.65 

TCI 34.91 24.53 133.75 1.45 76 0.96 

VHI 32.97 26.48 130.36 0.38 66 0.84 

R 31.11 24.67 107.09 0.66 65 0.82 

Cluster A       

VCI 46.86 30.09 114.68 6.83 15 0.94 

TCI 52.49 31.63 133.75 7.90 16 1.00 

VHI 54.54 31.10 130.36 7.94 16 1.00 

R 50.73 25.85 92.13 9.32 15 0.94 

Cluster B       

VCI 26.19 23.14 85.71 2.65 14 0.52 

TCI 33.46 20.27 81.77 1.91 27 1.00 

VHI 28.14 22.91 89.81 2.56 21 0.78 

R 23.50 19.79 79.54 0.66 22 0.81 

Cluster E       

VCI 29.02 27.47 80.76 0.33 14 0.78 

TCI 26.74 23.68 82.09 1.45 18 1.00 

VHI 22.96 21.74 90.45 0.38 16 0.89 

R 22.31 12.80 46.26 7.74 12 0.67 

Cluster F       

VCI 34.76 23.12 81.58 10.01 8 0.44 

TCI 28.57 14.89 45.90 3.66 15 0.83 

VHI 26.56 16.83 62.72 2.09 13 0.72 

R 29.80 27.77 107.09 1.35 16 0.89 

Note: SD indicates standard deviation. 

Source: Own illustration 
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The fair index insurance premiums were, depending on the index, varying between 2.2% to 

2.4 % of the mean revenues from winter wheat per hectare on average. On average, the highest 

insurance premiums were found in cluster A. The average insurance premiums in cluster A 

were EUR 46.86 for the VCI, EUR 52.49 for the TCI, EUR 54.54 for the VHI, and EUR 50.73 

for the benchmark per hectare, corresponding to 3.8% to 4.4% of the mean annual revenue of 

winter wheat per hectare of farms in this cluster. Further information regarding the contract 

parameters can be found in the appendix including intercept and coefficient statistics of the 

quantile regression (Table A2) and strike level and tick size statistics (Table A3). 

The results of the HE in terms of relative increase in the expected shortfall are presented in 

Table III. By assessing the individual insurance premium all of the satellite-based VH indices 

and the benchmark index show a positive effect on the HE compared to no insurance on average. 

Considering the full sample, a HE of 2.11% was found for the TCI-based index insurance. The 

average HE for the VHI-based and the VCI-based were 1.96% and 1.35% respectively. All 

indices outperformed the benchmark precipitation index given an average HE of 1.28%. 

Therefore, the TCI-based index insurance showed the highest HE. The Wilcoxon rank sum test 

results in Table IV confirm that the HE of the TCI-based and the VHI-based were statistically 

significantly higher compared to the benchmark. In addition, the HE of the TCI-based and the 

VHI-based were statistically significantly higher compared to the VCI-based index insurance 

considering the full sample. No statistically significant higher HE was identified for the VCI-

based compared to the precipitation-based index insurance. The TCI-based and VHI-based 

outperformed the benchmark index in 73% and 63% of the farms in the case that a drought risk 

was identified for both.  
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Table III Results of the hedging effectiveness of index insurance based on different indices 

 Mean HE  SD HE Insured farms Share insured farm 

Full sample     

VCI 1.35% 1.85% 51 0.65 

TCI 2.11% 2.10% 76 0.96 

VHI 1.96% 2.20% 66 0.84 

R 1.28% 1.85% 65 0.82 

Cluster A     

VCI 2.34% 2.48% 15 0.94 

TCI 4.76% 2.34% 16 1.00 

VHI 4.46% 2.27% 16 1.00 

R 3.27% 2.84% 15 0.94 

Cluster B     

VCI 0.99% 1.33% 14 0.52 

TCI 1.70% 1.38% 27 1.00 

VHI 1.43% 1.80% 21 0.78 

R 0.65% 0.73% 22 0.81 

Cluster E     

VCI 0.85% 1.65% 14 0.78 

TCI 0.99% 0.88% 18 1.00 

VHI 0.93% 1.48% 16 0.89 

R 0.53% 0.60% 12 0.67 

Cluster F     

VCI 0.87% 0.86% 8 0.44 

TCI 1.37% 0.95% 15 0.83 

VHI 0.92% 0.74% 13 0.72 

R 0.74% 0.93% 16 0.89 
Note: SD indicates standard deviation. 

Source: Own illustration 

To quantify the reduction in basis risk by the VH indices, the absolute difference in the 

average HE between the different index insurance can be calculated. Thus, the TCI-based index 

insurance reduces the basis risk by 0.83% index and the VHI-based by 0.68% compared to the 

benchmark on average. According to the Wilcoxon rank sum test, the reduction in basis risk is 

statistically significant, however, the effect is smaller compared to the results of Möllmann et 

al. (2019).  

A huge heterogeneity in the HE across the farms and correspondingly the four clusters was 

observed. Most notably, cluster A shows the highest HE for all indices. The average HE for the 

TCI-based was 4.76%, for the VHI-based 4.46%, for the VCI-based 2.34% and the 

precipitation-based 3.27%. Based on Wilcoxon rank sum test results, the HE of the TCI-based 

outperforms the precipitation-based in a statistically significant way. Consequently, the TCI-
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based can reduce the basis risk by 1.49% compared to the precipitation-based index insurance. 

In this cluster, the TCI outperformed the benchmark index in 67% of the farms and the VHI 

outperformed the benchmark index in 73% of the farms. 

Table IV Results of the Wilcoxon rank sum test for the HE of index insurance expressed as p-

values 

 VCI TCI VHI R 

Full sample     

VCI 1.0000 0.0097 0.0474 0.4338 

TCI  1.0000 0.2390 0.0015 

VHI   1.0000 0.0237 

R    1.0000 

Cluster A     

VCI 1.0000 0.0060 0.0084 0.1700 

TCI  1.0000 0.3188 0.0465 

VHI   1.0000 0.0745 

R    1.0000 

Cluster B     

VCI 1.0000 0.1387 0.2667 0.2878 

TCI  1.0000 0.2945 0.0212 

VHI   1.0000 0.1640 

R    1.0000 

Cluster E     

VCI 1.0000 0.0772 0.3163 0.6052 

TCI  1.0000 0.2087 0.0966 

VHI   1.0000 0.3547 

R    1.0000 

Cluster F     

VCI 1.0000 0.2324 0.9135 0.4979 

TCI  1.0000 0.2136 0.0745 

VHI   1.0000 0.3569 

R    1.0000 

Source: Own illustration 

On the contrary, the HE observed in the other clusters is considerably lower. Across all 

clusters, the TCI-based index insurance shows the highest HE. A HE of 1.70% in cluster B, 

1.37% in cluster F, and 0.99% in cluster E was found for the TCI-based insurance. Although 

the HE is low, the TCI-based index insurance statistically significantly outperforms the 

precipitation-based in clusters B and F according to the result of the Wilcoxon rank sum test, 

corresponding to a basis risk reduction by 1.05% in cluster B and 0.63% in clusters F. 

Furthermore, the VHI-based index insurance performed second best with a HE of 1.43% in 

cluster B, of 0.93% cluster E and of 0.92% in cluster F. However, no statistically significant 
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reduction in basis risk compared to the benchmark can be identified. This also applies to the 

VCI-based index insurance, for which a HE of 0.99% (cluster B), 0.85% (cluster E), and 0.87% 

(cluster F) was determined. We elicited considerable variation in the HE across the clusters, but 

also within the clusters. More information regarding this can be found in Figure III. 

 

Figure III Boxplots showing the hedging effectiveness in percent estimated by means of the 

expected shortfall across the different clusters 

Source: Own illustration 

 

Cluster A Cluster B 

Cluster E Cluster F 
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Our results show that index insurance based on the TCI and VHI outperformed the 

benchmark index on average and in every cluster. However, they did not outperform the 

benchmark index for every farm. More specifically, we identified a high variation in the HE 

across farms and counties and even within clusters. Correspondingly, the basis risk reduction 

varies between the different clusters. Our results are robust when considering the satellite image 

before and after the coverage period. Therefore, the location-specific conditions including 

climate and soil types might affect the performance of the VH indices. As mentioned, cluster A 

is characterized by low-quality sandy soils and a low amount of precipitation. Thus, this area is 

more prone to drought-related yield losses. Indeed, the highest HE observed shows that this 

cluster is well suited for index insurance based on VH indices. Thus, our results are in line with 

Möllmann et al. (2019) who purely focused on farms in this region in their analysis.  

However, the HE is lower compared to their findings which may be caused by using 

objectively measured phenological growth stages instead of the best correlated period as the 

coverage period. This can be claimed considering that also Vroege et al. (2021) achieved a 

larger on-average risk reduction when using the best individually tailored coverage period. 

Nevertheless, insurers can be advised to incorporate VH-indices with a spatial resolution of 1x1 

km in general and the TCI in particular to design standardized new insurance products for 

farmers in Northeastern Germany which come up with low transaction costs for insurers. In 

doing so, the basis risk for farmers in this region can be reduced statistically significantly.  

Conversely, the HE in clusters with better soil conditions and higher annual precipitation was 

lower. Although the TCI and VHI outperformed the benchmark in all clusters, the effect sizes 

of basis risk reduction are small. Hence, the VH indices used in this study may not be the key 

to designing index insurance on better soils. This finding is of importance considering that 

higher relative drought-related yield losses were observed in regions with better soils during 

the past decade (Schmitt et al., 2022; Trnka et al., 2014). Since we already excluded forests, 
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lakes, and villages, a distortion of the results through these factors may not be a problem. 

Therefore, insurers and researchers should further investigate the performance of other types of 

satellite data on better soils with high yield potentials. For example, the findings of Vroege et 

al. (2021) who investigated the risk reduction potential satellite-retrieved soil moisture data for 

farms in Eastern Germany should be checked in regions with better soils. The recently 

published work by Duden et al. (2024) offers a starting point for a broader analysis of the HE 

for different crops throughout Germany. Identifying a high-performing index in regions with 

better soils is crucial to increasing farmers’ adoption rate of index insurance and enhancing the 

resilience of these farms. 

One possible explanation for a better performance of the TCI compared to the VCI and VHI 

might be the difference in temporal resolution since the TCI has a temporal resolution of 8 days 

and the VCI of 16 days, which leads to a different number of observations per year. However, 

when we extended the coverage period by using the satellite image before and after the 

phenological growth stages, we did not find a statistically significant difference in the results. 

Moreover, Möllmann et al. (2019) also found the lowest HE for the VCI-based index insurance 

even though their data had a similar temporal resolution compared to the TCI. Thus, a higher 

temporal resolution may not automatically increase the performance of the VCI- and VHI-based 

index insurance. However, according to Vroege et al. (2021), fewer observations in general 

may decrease the performance of the insurance, highlighting the importance of long historical 

records. Thus, possible effects need to be investigated when the data is available. In addition, 

our approach to determining the strike level might influence the results as this was highlighted 

by Vroege et al. (2021). As mentioned we used the quantile value of the yield distribution 

instead of the average winter wheat yield. 

Besides the performance of the VH indices, there are remaining challenges regarding their 

practical implementation (see Nordmeyer et al. (2023) for a broader discussion). For one, a low 
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VH index is not automatically linked to drought. In particular, it cannot accurately be identified 

if a drought or late frosts, for example, cause damage to growing winter crops in spring 

(Frederiks et al., 2015). However, frosts may play a minor role in winter wheat in Germany 

(Schmitt et al., 2022). Furthermore, considering our high granularity, the risk of moral hazard 

occurs given that diseases and farming practices might affect the health of the crops (Webber 

et al., 2020). Avoiding the risk of moral hazard would increase the transaction costs for insurers, 

leading to higher loadings for index insurance products (Clement et al., 2018). Therefore, 

overcoming this should also be prioritized by insurers.  

5. Conclusion 

Even though index insurance is a promising tool to mitigate drought-related income losses 

in agriculture, farmers’ demand in Europe and Germany in particular remains low given basis 

risk concerns as a major reason. To reduce the basis risk of index insurance and therefore 

increase its attractiveness of index insurance to farmers, researchers turned their attention to 

satellite-retrieved data. Given limited knowledge regarding the performance index insurance 

based on satellite-retrieved VH indices, this paper contributes to the existing literature by 

investigating the HE of VH indices in Northern and Eastern Germany by using winter wheat 

yield records from 79 farms over 20 years. In doing so, we designed index insurance based on 

the VCI, TCI, and VHI with a spatial resolution of 1x1 km. As a benchmark, an index based on 

precipitation sum was designed. 

Our results indicate that the TCI and VHI reached the highest HE on average and 

outperformed the benchmark index in every cluster. In particular, a statistically significant 

reduction in basis risk was found on average. More specifically, the basis risk reduction is 

statistically significantly higher in regions in Eastern Germany that are characterized by sandy 

soils like Brandenburg and Saxony Anhalt which are therefore more prone to droughts. The HE 

and basis risk reduction were considerably higher than in regions with better soil and climate 
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conditions. A statistically significant higher HE and basis risk reduction, on average, for the 

TCI-based compared to the benchmark was also found for farms in Saxony, southern parts of 

Lower Saxony, and Thuringia, but at a lower level. However, a basis risk reduction was not 

found for every farm.  

The observed heterogeneity in the HE highlights the relevance of this study and leads to 

several implications. For one, insurers can be advised to accelerate research and development 

of index insurance based on the VH indices in regions of Eastern Germany and with respect to 

the TCI-based in particular. By considering our design, index insurance with low transaction 

costs and comparatively low loading factors can be offered to farmers. In contrast, farmers in 

regions like Lower Saxony still lack sufficient insurance schemes as no statistically significant 

increase in the HE compared to the benchmark was found on average even though they also 

experienced high drought-related yield losses. Thus, ongoing research is needed to identify 

drought indicators on better soils.  

Policymakers can be advised that index insurance products using satellite data can improve 

the risk management of many farmers in eastern Germany. However, it's important to note that, 

in relative terms, the HE of the VH observed in our case study and also on the sandy soils is 

lower compared to studies focusing on individually tailored coverage periods. In addition to 

regional characteristics, the effect of satellite-based weather index insurance contracts depends 

strongly on the quality of satellite and yield data (Kölle et al., 2021). Therefore, policymakers 

should be aware that our results indicate that the resilience of the agricultural sector could be 

magnified by higher data availability and accessibility for insurers. 

In addition, our results highlight the trade-off between individually tailored index insurance 

and index insurance with low transaction costs. Furthermore, it can be argued that the focus on 

the county level instead of the farm level could improve the HE as this was shown by Möllmann 
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et al. (2019). However, previous literature has shown that market acceptance decreases as the 

complexity of index insurance products increases (Odening and Shen, 2014). 

As the data preparation of meteorological and satellite data, as well as the calculation of the 

index insurance products with our approach, are very challenging, our study can contribute to 

reducing the effort and transaction costs for insurers and researchers. Given our large sample, 

we can recommend focusing on the TCI and VHI when designing index insurance products. In 

addition, digitalization could further reduce transaction costs, as data preparation is the most 

labor-intensive part. Thus, the direct availability of VHI and TCI could reduce transaction costs, 

as the calculation of index insurance for an additional farm is only associated with 

comparatively low marginal costs. 

Nonetheless, our study is limited with respect to the low temporal resolution of the VCI 

compared to the TCI, which also affects the VHI. Although no statistically significant 

difference was found when extending the number of satellite images considered, future research 

should investigate the performance of the VCI if data with higher temporal resolution is 

available. Furthermore, crop rotation might influence our results. Since crop rotation is 

mandatory in the European Union, our satellite images do not cover winter wheat every year. 

Consequently, the specific crop rotation might influence the performance of the VCI and VHI. 

However, this paper should be seen as part of a larger set of studies that investigate the potential 

of satellite-retrieved data that offer starting points for ongoing research. Future research could 

also transfer our approach to the global south which is strongly affected by climate change. 

Especially in countries with a lower density of weather stations, satellite-retrieved VH could 

reduce the basis risk considerably.  
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Appendix 

Table A1 Descriptive statistics of the satellite-retrieved VH indices and the benchmark index 

between 2000 to 2019 (N=79) 

 Mean SD  Max  Min 

Full sample     

VCI 79.46 5.98 95.76 56.56 

TCI 24.81 5.06 37.03 8.79 

VHI 52.13 4.19 63.97 35.78 

R 113.85 48.97 342.10 15.63 

Cluster A     

VCI 80.19 5.87 95.76 62.06 

TCI 24.03 5.34 37.03 9.49 

VHI 52.11 4.50 63.97 37.02 

R 90.74 42.10 290.17 13.20 

Cluster B     

VCI 79.36 5.63 95.79 63.31 

TCI 26.57 4.30 37.01 14.04 

VHI 52.96 3.68 61.46 42.45 

R 112.44 46.12 318.45 12.83 

Cluster E     

VCI 76.82 9.12 91.98 56.56 

TCI 26.10 14.31 35.62 8.79 

VHI 49.14 7.29 60.94 35.78 

R 128.90 48.68 290.23 15.63 

Cluster F     

VCI 79.86 6.46 92.10 66.74 

TCI 24.66 5.04 36.69 9.46 

VHI 52.36 3.90 61.43 39.95 

R 121.45 51.45 342.10 30.30 

Note: SD indicates standard deviation. 

Source: Own illustration  
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Table A2 Intercept and coefficients of the quantile regression 

 Intercept Coefficient   

 Mean SD  Mean  SD Insured 

farm 

Share 

insured 

farm 

Full sample       

VCI 3.73 53.00 0.83 0.62 51 0.65 

TCI 38.07 24.96 1.23 0.76 76 0.96 

VHI 3.16 48.52 1.27 0.84 66 0.84 

R 60.23 15.33 0.09 0.08 65 0.82 

Cluster A       

VCI -34.07 55.60 1.19 0.61 15 0.94 

TCI 16.21 15.42 1.82 1.11 16 1.00 

VHI -46.33 45.43 2.05 0.83 16 1.00 

R 42.70 16.88 0.18 0.11 15 0.94 

Cluster B       

VCI 20.61 39.91 0.65 0.48 14 0.52 

TCI 42.29 19.12 1.16 0.53 27 1.00 

VHI 11.68 44.49 1.13 0.75 21 0.78 

R 67.47 12.04 0.06 0.05 22 0.81 

Cluster E       

VCI 15.55 52.57 0.77 0.68 14 0.78 

TCI 48.91 34.03 0.89 0.61 18 1.00 

VHI 24.58 36.47 0.98 0.71 16 0.89 

R 67.84 4.74 0.06 0.03 12 0.67 

Cluster F       

VCI 24.37 37.29 0.56 0.48 8 0.44 

TCI 40.81 16.07 1.13 0.53 15 0.83 

VHI 23.94 27.17 0.87 0.51 13 0.72 

R 60.99 9.31 0.06 0.06 16 0.89 

Note: SD indicates standard deviation. 

Source: Own illustration  
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Table A3 Strike level and tick size (in EUR) statistics of the insurance contracts 

 Strike level Tick size   

 Mean SD  Mean  SD Insured 

farm 

Share 

insured 

farm 

Full sample       

VCI 79.64 5.98 15.88 12.54 51 0.65 

TCI 25.22 7.51 24.29 15.51 76 0.96 

VHI 52.15 3.12 25.01 17.05 66 0.84 

R 121.60 38.38 1.72 1.73 65 0.82 

Cluster A       

VCI 80.92 5.04 22.31 13.28 15 0.94 

TCI 23.57 3.44 36.36 22.23 16 1.00 

VHI 52.00 3.16 41.02 16.63 16 1.00 

R 93.57 22.02 3.67 2.20 15 0.94 

Cluster B       

VCI 79.81 3.29 12.20 10.09 14 0.52 

TCI 26.09 2.86 22.35 11.36 27 1.00 

VHI 53.20 2.09 21.60 15.73 21 0.78 

R 122.47 38.37 1.18 1.10 22 0.81 

Cluster E       

VCI 76.77 8.85 15.34 13.68 14 0.78 

TCI 25.08 14.78 17.80 12.12 18 1.00 

VHI 49.88 3.85 19.69 14.16 16 0.89 

R 133.24 41.20 1.12 0.58 12 0.67 

Cluster F       

VCI 81.98 3.59 11.18 9.58 8 0.44 

TCI 25.60 2.04 22.69 10.54 15 0.83 

VHI 53.42 1.96 17.34 10.16 13 0.72 

R 137.96 35.80 1.09 1.14 16 0.89 

Note: SD indicates standard deviation. 

Source: Own illustration 
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