
1 
 

 
 

Assessing the trade-off between SO1 and SO5 policy intervention through an ex-ante PMP-AB 
model: the case of Emilia Romagna Region 

 
 
 

Lisa Baldi*, Filippo Arfini, Michele Donati, Sara Calzolai 
 

University of Parma 
 
 

Contributed Paper prepared for presentation at the 98th Annual Conference of the Agricultural 
Economics Society, University of Edinburg, United Kingdom 

 
18 – 20 March 2024 

 
 
 
Copyright 2023 by Lisa Baldi, Filippo Arfini, Michele Donati, Sara Calzolai.  All rights reserved. 
Readers may make verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies. 
 
*Lisa Baldi, Via J.F.Kennedy 6, 43123 Parma, Italy, lisa.baldi@unipr.it 
 
 
 

Abstract 
The flexibility granted by the new Common Agricultural Policy (CAP) Delivery Model enables EU 
Member States to customise the application of agricultural policy interventions according to the specific 
needs of each Member State. At the same time, the EU requires careful monitoring concerning the 
achievement of the 10 Strategic Objectives. This research aims to assess the trade-off, if existing, 
between the CAP objective aiming at supporting viable farm income (SO1) and the one intended to 
foster sustainable development (SO5). The trade-off is evaluated by conducting an ex-ante analysis to 
assess the potential impact of regional payments for organic conversion on both farm viability and 
environmental sustainability, more specifically in terms of water consumption, use of fertilisers and 
pesticides. The impact assessment utilises an Agent-Based Model implemented through a positive 
mathematical programming approach. The efficiency of policy intervention is evaluated through the 
“Synthesis questions and judgement criteria” set by DG AGRI as a means to assess the effectiveness of 
the National Strategic Plans (DG AGRI, 2023). Preliminary results on SO1 show that organic farming 
payment increases farm income, especially amongst the smaller farms, generally considered being the 
most vulnerable ones, while farm Gross Margin per Agricultural Working Unit presents a lower 
inequality distribution. 
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1. INTRODUCTION 

The environmental impact of intensified agriculture, despite the "greening" measures included in the 
2014-2020 CAP, continues to harm climate, water, pollinators, biodiversity, human well-being, and 
cultural heritage (European Environmental Agency 2019; Nègre, 2022).  
The post-2020 CAP reform started on January 1, 2023 is a new attempt to rectify these issues and align 
with the EU Green Deal and the goals of the Farm-to-Fork and Biodiversity strategies. In this context, 
the ongoing CAP architecture has introduced, on the one hand, the eco-schemes, which entitles Member 
States to allocate at least 25% of first pillar payments to measures beneficial for the environment and the 
climate. On the other hand, the New Delivery Model, outlined in Regulation (EU) 2021/2115, is a pivotal 
component of the CAP post-2020, and it emphasises performance and results over compliance. It 
redistributes responsibilities, giving EU countries more autonomy to tailor agricultural policies to their 
specific needs while ensuring uniform standards across the EU. The model is built around CAP Strategic 
Plans, allowing for targeted interventions that align with both national priorities and EU-wide objectives.  
Additional specifications provided in the Commission Implementing Regulation 2022/1475 mandate 
Member States to assess the contribution of their National Strategic Plans across dimensions such as 
effectiveness, efficiency, relevance, coherence, and added value, supporting a shift from a compliance-
oriented approach to a more performance-based approach (EU CAP Network, 2023). The introduction 
of performance reports and a comprehensive set of indicators should facilitate monitoring and 
evaluation. This evaluation process must adhere to the Performance Monitoring and Evaluation 
Framework (PMEF) and must be developed by the Member State (EC, 2021) rather than the European 
Commission (EC). The evaluation must address several issues, such as the numerous factors affecting 
farm income, the complexity of assessing the CAP's net effects, the need for granular data, and the 
adoption of methodologies that capture the behaviour of individual farmers under various policy 
scenarios, thereby accounting for the heterogeneity of impacts on farm structure (EU CAP Network, 
2023). Furthermore, as part of the PMEF (Article 139 of the EU 2021/2115 Regulation), Member States 
must conduct a preliminary assessment of their Common Agricultural Policy Strategic Plans (CSPs). 
The ex-ante evaluations are intended to enhance the CSP's formulation quality and set a baseline for its 
assessment throughout the 2023-2027 execution period. The objective of the ex-ante evaluations is to 
enhance the quality of the plans and to determine a baseline for its assessment throughout its 
implementation from 2023 to 2027. 
Also at the granular level of individual policy and within a regional context, preliminary evaluations can 
be instrumental in quantifying the extent to which a policy contributes to the attainment of its delineated 
targets and in identifying prospects for methodological and procedural enhancements. Moreover, ex-
ante assessments can ascertain the alignment and synergy across varied intervention mechanisms, and 
quantify how expected outputs will contribute to results through the use of predefined indicators.  
This paper's intent is to carry out a preliminary impact analysis of the CAP specific objective aiming at 
supporting viable farm income (SO1) and the specific objective fostering sustainable development (SO5) 
using an agent-based model (ABM), based on Positive Mathematical Programming (PMP). Looking at 
these two CAP objectives could seem at odds due to their different primary focuses and potential for 
conflicting outcomes. SO1 emphasises supporting viable farm incomes and resilience within the 
agricultural sector to promote food security, agricultural diversity, and economic sustainability. This 
often involves practices that aim to maximise production and profitability, which can lead to an increase 
in the use of inputs such as fertilisers, pesticides, and water to ensure high yields and stable market 
supply. SO5, on the other hand, is centred on promoting the sustainable use of natural resources and 
reducing reliance on chemicals. The drive towards sustainability often requires adopting practices that 
may initially seem to reduce the productivity and profitability of farms, such as reducing the use of 
chemical inputs that are harmful to the environment. 
The methodological choice is driven by the fact that PMP is widely used in agricultural policy 
assessment (Howitt, 1995; Britz et al., 2012; Solazzo et al., 2014; Reidsma et al., 2018; Matthews, 2022). 
A distinctive feature of PMP is its ability to recover important entrepreneurial decision variables, such 
as hidden costs related to past farming experience, risk attitude, and production expectations. In this 

https://www.eumonitor.eu/9353000/1/j4nvk6yhcbpeywk_j9vvik7m1c3gyxp/vlok8fwdhhzj
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R1475
https://eu-cap-network.ec.europa.eu/sites/default/files/publications/2023-12/synthesis-of-ex-ante-evaluations-of-cap-post-2020.pdf
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study we combine the PMP approach with an ABM to capture interactions between farms in the use of 
scarce resources and to fulfil important disaggregated specifications capturing farm heterogeneity 
(Reidsma et al., 2018; Berger & Troost 2014). 
To measure the impact of the scenarios implemented in this model, we use some of the indicators 
proposed in the PMEF. This framework considers four types of indicators: output, result, impact and 
context indicators (Regulation (EU) 2021/2115). More specifically output indicators can be useful to 
assess the immediate results of the subsidy (e.g., the number of farms that adopted organic farming 
practices due to the subsidy). Result indicators provide information on the medium-term effects, such as 
changes in farm income levels or improvements in resource efficiency due to reduced chemical fertiliser 
usage. Impact indicators should help assess the long-term consequences of the subsidy on farm incomes 
and resilience, as well as the environmental outcomes. The context indicators, that provide background 
information that could influence the performance of the other indicators (e.g., overall trends in the 
agricultural sector, economic context, etc.) are not considered in this paper. 
The economic effects related to SO1 are evaluated, according to PMEF, using the Agricultural Working 
Unit (AWU) and Fam net value added (FNVA). These indicators provide information on the actual 
remuneration of labor and capital from agricultural activities, reflecting the economic viability and 
income stability on farms, which is directly linked to the objective of supporting viable farm incomes 
and resilience.  
To measure the environmental perspective related to SO5, the impact indicators that reflect the long-
term sustainability of natural resource management and reductions in chemical dependency would be 
the best suited but not realistically usable as measurement, given the short time horizon (the agronomic 
year) used in this paper. In line with the Farm-to-Fork and Biodiversity strategies, the CAP should be 
key in supporting the sustainable use of fertilisers in agriculture, ensuring that farmers can maintain 
productivity while also reducing the harmful effects of pollution. However, the Farm-to-Fork target of 
a 20% reduction of the synthetic fertiliser usage is not emphasised in the CAP 2023-2027 nor reported 
as a specific indicator associated to SO5.  
In this paper we consider of the ratio between farms gross margin (GM) and AWU, resulting from two 
alternative scenarios: strengthening organic farming and reducing mineral fertiliser use by 20% for 
conventional farms. Despite the FADN methodology switched from using Standard Gross Margin to 
Standard Output for measuring a farm’s overall economic size (EC, 2021), in our model we use the farm 
GM as it better represents the internal decision-making and management process, driven by the farm 
holders behavioral path, helping to assess the efficiency and profitability of the different farms in the 
sample. Farms Standard Output, on the other hand, uses standard values to facilitate comparisons, not 
necessarily reflecting current market prices or individual farm cost structures. 
This study is organised as follows. The methodology and data section presents the reasons why the PMP 
approach and the ABM method have been chosen, the structure of the AGRISP model (Agricultural 
Regional Integrated Simulation Package), the characteristics of the farm sample used for the analysis 
and the policy scenarios implemented. Section three is dedicated to analysing the results by 
disaggregating the sample into deciles and assessing income distribution equity by farm and by AWU, 
using the Gini index. The fourth section discusses these findings and concludes the study. 
 

2. METHODOLOGY AND DATA 
 

2.1. Agent-based models and PMP 
ABMs are designed to simulate interactions among agents, thereby they can be used to describe the 
effects on land exchange and structural changes, considering agents’ productivity, efficiency, and spatial 
heterogeneity within their territory (Reidsma et al., 2018). Agents can represent different individual 
farms, entrepreneurs, or aggregated entities, such as farm types.  
The ability of ABMs to capture agents’ interactions can be leveraged under the assumption of non-full 
rationality in production preferences, reflecting the tendency of farmers to prioritise maximising their 
utility function over their profit function (Nolan et al., 2009; Kremmydas et. al 2018). This is plausible 
when agents represent individual farm-households, in which family structure and other individual 

https://www.eumonitor.eu/9353000/1/j4nvk6yhcbpeywk_j9vvik7m1c3gyxp/vlok8fwdhhzj
https://agriculture.ec.europa.eu/system/files/2021-11/eu-farm-econ-overview-2018_en_0.pdf
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characteristics are particularly important in determining transaction costs affecting the economic 
objective. Decisions are based on production factor endowment and level of technological knowledge, 
as well as the perception of economic and technical risks.  
The literature provides some attempts to measure the effect of CAP provisions through ABM models, 
such as AgriPoliS (Happe et. al 2004), MP-MAS (Schreinemachers and Berger, 2011), and RegMAS 
(Lobianco & Esposti, 2010). For more insights into the different types of ABMs, Kremmydas et al. 
(2018) have conducted a systematic literature review on ABMs for evaluating agricultural policies.  
Linking ABMs with Positive Mathematical Programming models offers the advantage of creating micro-
level models that can depict technological variations based on the structural characteristics of the farms. 
This optimisation takes into consideration the unique characteristics and behaviors of individual farmers, 
starting from the observed optimal scenario. The cost function is hypothesised to be a quadratic 
functional form in output quantities: C(x) = x'Qx/2, where the Q matrix is symmetric and positive 
semidefinite. Additionally, this integration allows for the simulation of structural and technological 
changes, such as changes in farm size or the potential abandonment of farm activities. An ABM based 
on PMP can estimate these choices by simulating land exchange,  the introduction of new activities and 
changes in agricultural management practices. Aggregating these results can provide a useful and solid 
insight into the general trend of the agricultural sector at regional, national, and international levels.  
PMP is generally used as a straightforward calibration technique as seen in the CAPRI model, where 
specific technical coefficients are applied. In this study, the PMP methodology employed for calibration 
is based on farm marginal costs, which consider not only accounting costs but also the "transaction costs" 
perceived by the farmers. Calibration using the marginal costs of observed data enables the extrapolation 
of the social component, considering historical and attitudinal factors (referred to as hidden or latent 
costs), influencing a farmer's decision to produce, for instance, maize instead of tomatoes. This choice 
can significantly depend on factors such as the farmer's age, risk tolerance, or farm size. 
Although there is no theoretical rationale requiring a specific functional form for farmers' reactions, the 
quadratic form is employed in this study because it is widely used in Agricultural Economics and 
inherently represents the cost function. Additionally, the Cholesky decomposition ensures to obtain a 
symmetric and positive semidefinite matrix.  
 

2.2. The model structure 
AGRISP, the model used in this paper, is a supply ABM, based on the PMP approach, which models 
farm-holders as agents and analyses the impact of agricultural policies on agents' behaviours related to 
land use, gross margin and AWU, carbon emission, and water consumption. AGRISP is implemented in 
GAMS (GAMS 2023) and is articulated in a calibration and a simulation module, depicted in Figure 1.  
The primary triggers influencing farmer behaviour and reactions to policy scenarios are the individual 
economic cost function and the agent-based rules steering the decisions.  
The farm cost function is estimated in the calibration module using the standard PMP methodology 
proposed by Paris and Howitt (Paris & Howitt, 1998) and extended by Arfini (Arfini et al., 2008) for 
policy evaluation with FADN data. The calibration phase consists of three steps: i) Solving a positive 
linear programming (LP) model to obtain the dual values of a series of production constraints bounded 
to observed production; ii) Estimating a non-linear cost function for each observed farm based on the 
dual values according to the Maximum Entropy approach (Shannon, 1948; Paris e Howitt, 1998) 
resulting in the Q matrix; iii) Solving a non-linear programming (NLP) model that maximises the farm 
gross margin incorporating the non-linear cost function, represented by the Q matrix. This approach 
allows to replicate the production plan for all farms in the sample without using the calibration 
constraints of the first phase. The non-linear cost function returns the fundamental decision information 
related to the farm holder, influencing the allocation of resource endowments among various farm 
activities and the marginal cost within the LP model. Unlike in the SWISSland model (Möhring et al., 
2016), that only considers the diagonal elements, this study represents the Q matrix of the non-linear 
cost coefficients considering also the elements of the triangular components of the matrix. The Cholesky’ 
decomposition ensures the correct representation of the cost function by imposing the symmetric, 
positive and semidefinite structure of the matrix. 
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Figure 1: Figure 2. Model Structure. Source: authors’ own elaboration. 

The exact production level for each farm is estimated with the “self-selection”. A detailed explanation 
of self-selection rules and a comparison between the farm and frontier cost functions can be found in 
Paris and Arfini (Paris & Arfini, 2000).  
Within the AGRISP model, agents located in a designated agricultural regional agricultural have the 
capability to share and implement diverse farming methodologies or novel practices, contingent upon 
the accessibility of empirical technical data. This exchange is facilitated through a regional shared 
frontier-cost function, constructed via Positive Mathematical Programming (PMP), which incorporates 
the costs related to varying crops and farming techniques, as well as each farm's cost deviations. This 
cost function serves as a link among the farms in the sample. The deviation from the common cost 
function is regarded as a basis for comparing costs and profitability among the farms included in the 
sample.  
The introduction of a subsidy, a quota or a tax, which triggers changes in output prices of variable costs, 
leads farms to different cost-efficiency crop or techniques combination, as result of the optimisation run 
in the simulation phase. This can be viewed as a form of “social learning process” or, more accurately, 
as an exchange of technical and economic information made available, because observed, in the sample. 
The interconnectedness stems from all farms being aware of the potential techniques available. The 
latent technologies or crops are those options that agents could potentially adopt but remain "unused" 
by a farm due to their lack of economic viability within a particular simulated scenario. Supports coupled 
to a specific technique or tied to the acreage can alter the economic ratios among various production 
plans. As a result, farm holders may choose to adopt a new crop or technology from the array of 
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agronomic techniques practiced by the farms in the sample, originally latent in their production plan, 
and their decision is influenced not only by the accounting cost but also by the utility cost unique to each 
farm.   
Following calibration, the simulation module assess the repercussions of alternative policy scenarios by 
utilising the inherent positive data embedded in the non-linear cost function and applying a predefined 
set of theoretical behavioral norms. These agent-based rules offer a more realistic representation of the 
interactions among farms, encompassing resource exchange, as well as the choices made by the farmers 
regarding different agricultural practice, taking into account the specific social and family 
characteristics. Möhring et al. (2016) suggest a correlation between farm dynamism and demographic 
factors such as the age of the farm holder and the existence of successors. The underlying hypothesis 
posits that farmholders are prone to downscale operations upon reaching 65 years of age, and those 
without successors may refrain from expanding or converting to organic methods, while they rather lease 
out their lands, entirety or in portions. In the model, the complete rental of land is regarded as an exit 
from active farming operations. Conversely, younger holders, or those with potential successors, might 
pursue growth by leasing additional land or opt for transitioning to organic farming. It is important to 
highlight that each strategic decision within the model is based on the principle of cost-effectiveness, 
ensuring that economic considerations are at the forefront of the decision-making. Consequently, the 
economic cost function to be optimised reflects variables including land lease costs and the additional 
expenditures incurred from the transition to and maintenance of organic cultivation. 
The model's core attributes are quantitatively captured through a series of equations presented herein. 
For an in-depth exploration of how policy tools are integrated within the model, refer to Appendix 1, 
which provides comprehensive details on the implementation mechanisms 
Agent interactions (1-3) within the model are defined by a shared frontier-cost function (𝑄) with an 
individual deviation (u), and the application of a self-selection rule (4-5) by the nth farm. This self-
selection process enables farms to emulate the observed production plan by comparing the marginal cost 
of their current activity or technology against the average cost of a new, potentially more efficient 
activity or technology. The latter is characterised within the Q matrix as a latent option for an altervative 
activity or technology. 
 

max
!!"#

	(𝑝′$𝑥$ −	1/2𝑥%$𝑄.$𝑥$ 	− 	𝑢0$𝑥$)																					(1) 

 
𝐴$𝑥$ 	≤ 	 𝑏$																																																																							(2) 

 
𝑥$ 	≥ 0																																																																																(3) 

 
To account for the diversity of crop cultivation across the sample of farms, the model incorporates two 
sets of constraints. These constraints are intended to realistically reflect that not all farms grow every 
crop that is available in the region. The initial set addresses the assortment of crops that are actively 
cultivated, establishing the following equation for the marginal cost relationship for these crops: 
 

𝑚𝑐$&|	𝑥'& 	> 0		𝜆$& +	𝑐$& = 𝑄&𝑥'$ +	𝑢$& if the k-th activity is produced, k=1, …, Jn  (4) 
 
where mcnk is the marginal cost for the n-th farm associated to the k-th activity.  

For activities not undertaken by the n-th farm, the second set of constraints imposes weak inequalities. 
These ensure the marginal cost relationship is less than or equal to the frontier-cost function level, 
reflecting the absence of production for these particular activities on the farm: 

𝑚𝑐$&|	𝑥'& = 0 ∶ 	 𝜆̅$& +		𝑐$̅& 	≤ 𝑄&𝑥'$ +	𝑢$& 	if	the	𝒌(𝒕𝒉	activity	is	not	produced, k = 1,… , Jn	(5) 
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R is the level of production observed for activity k and the vector unk assumes the role of indexing the 
cost function with the farm n specific characteristics. l represents the implicit component of the marginal 
cost associated to the production of the activity k by the farm n. 
Constraints (4) and (5) enable farmers to select potential production activities from the entire spectrum 
of regional activities, based on those observed in the preliminary phase of the PMP (Paris and Arfini, 
2000). In scenarios where there is a transition to organic farming practices, the original equations (1-3) 
that governed conventional farming are substituted with a different set, namely Equations (6-8), to 
accurately reflect the changes in production dynamics. 
 

max
!""#,!#"#	

	𝑝′-𝑥- +	𝑝′.𝑥. −	
1
2	V𝑥-			𝑥.W		𝑄-.	 X

𝑥-
𝑥.Y 		(6) 

 
𝑆. 𝑡.			𝐴-𝑥- + 𝐴.𝑥. ≤ 	𝑏																																																	(7) 

 
	𝐴$-𝑥$- 	 ∙ 𝐴$.𝑥$. = 0																																																			(8) 

 
Any farm using conventional technology (c) can convert to organic technology (g) if it is more profitable.  
In the Italian FADN, information regarding the agronomic management practice (organic or 
conventional) is provided for each farm. From this information the average costs, yield and output prices 
of the organic production are extrapolated. When a farm convert to organic farming those values are 
applied for the crops included in its production plan.  
As mentioned above, with the non-linear cost component, the objective function takes advantage of the 
self-selection property, allowing the substitution of technology or crops based on the cost information 
provided in the Qcg matrix. Consequently, farms that decide to convert to organic farming change their 
production plan and cost structure.  
Equations (9-14) represent the rules related to the exchange of the land factor between agents. Setting j 
activities, n and m farm holdings exchange land between each other. Equation 9 indicates that the 
available utilised area is equal to the available area plus the rented-in land minus the rented land. 
Equations (9 - 14) model the land rental decisions of farmers, stipulating that the land rented must be 
equivalent to the land rented out at the regional level. Specifically, constraint (9) ensures that the sum of 
land allocated to various crops j (j = 1, . . . ,J) does not exceed the total available land at the j farm level, 
bn, adjusted for land rented (Zn) and rented out (Vn). 
  

	𝐴$/𝑥$ ≤ 𝑏$ +	𝑍$ − 𝑉$																																						(9)	 
 
The land rented is represented as: 

𝑍$ =	d𝑍𝑍$0
0

																																																		(10) 

 
and the land rented out is represented as: 

𝑉0 =	d𝑉𝑉$0
$

																																																			(11) 

 
where ZZnm and VVnm are the matrix tracing the transfer of land for each pair of farms for renting and 
renting out, respectively. Additionally, equation (12) guarantees that for each pair of farms, the land 
rented by one must be equal to the land rented out by the other:  
 

𝑍𝑍$0 −	𝑉𝑉$0 = 0			∀𝑛 ≠ 𝑚																										(12) 
 
To avoid a given farm renting and renting out land at the same time, a specific constraint is used:  
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𝑍$ 	 ∙ 	𝑉$ = 0																																																								(13) 
 
Finally, to maintain consistency in land exchange within the region, we stipulate that the overall amount 
of land rented must be equivalent to the total land leased out:  
 

d𝑍$ =	d𝑉$
$$

																																																(14) 

 
We assume that the exchange of land is limited to the farms located in the same agrarian region. Each 
farm has a marginal cost level, estimated with the PMP, beyond which acquiring additional land provides 
no further advantage. Introducing a price shock or a policy incentive can lead to a change in the shadow 
price of land for a specific farm. However, the land rental price remains constant, as it is treated as 
exogenous to the model and is assumed to be uniform throughout the Emilia-Romagna region. 
Agents’ interactions are regulated by the behavioural rules already mentioned in the previous section 
and here summuarised: i) Conventional farmers older than 65 and without successors cannot move to 
organic practices; ii) Farms are only allowed to exchange land within the agrarian regions where they 
operate; iii) Farmers older than 65 and without successors cannot rent land. 
The input level is calculated based on the spending on purchased inputs, both for crops and livestock, 
per hectare of UAA. The inputs are purchased fertilisers and soil improvers, plant protection products, 
other means for protection, bird scarers, anti-hail shells, frost protection and purchased feed. 
 

2.3. Policy Assessment 
The policy impact assessment is conducted by analysing specific results and output indicators (DG 
AGRI 2023) that reflect the economic farms’ viable condition and their impact on natural resources 
before and after the introduction of the policy intervention. Thus, policy evaluation requires granular 
information, allowing indicators on different dimensions (by farm size) and at different scales (such as 
farm, hectarege, AWU). The observed distribution of GM/Farm and GM/AWU among all the farms in 
an area is reached by constructing the Lorenz curves and calculating the Gini index. This indicator has 
been used to observe income disparities between farms by highlighting the efficiency of agricultural 
policies in supporting fair farm income distribution of a sample of farms belonging to the FADN 
observatory (Allanson, 2007; Severini and Tantari, 2012; Marino et al., 2021). 
In this study, using the Gini index is particularly apt for analysing the impact on all farms in the FADN 
sample from the Emilia Romagna Region. This analysis encompasses both the level and distribution of 
income, along with environmental indicators.  
To provide environmental impact assessment, we integrated the Italian FADN data with environmental 
information on greenhouse gas (GHG) emission factors and water consumption for the different crops. 
GHG emissions from agricultural activities are estimated by applying the ICAAI methodology 
(Impronta Carbonica dell’Azienda Agricola Italiana), developed by CREA-PB, following the guidelines 
provided by the IPCC for establishing a national inventory of greenhouse gas emissions (Coderoni et al. 
2013; IPCC 2008). This procedure, already implemented by Solazzo et al., (Solazzo et al. 2016) assumes 
that the amount of atmospheric emissions is linearly related to the level of economic activity, and the 
emission factors considered for the agricultural sector are carbon dioxide, methane and nitrous oxide, 
expressed in ton CO2eq per hectare or head of livestock. The conversion factors referred to the 100-year 
Global Warming Potential and are provided by the Fourth Assessment Report of the IPCC (IPCC 2007), 
following Equation (15): 
 

𝐶𝑂1	𝑒𝑞 = 	𝐶𝑂1 + 298 ∙ 𝑁1𝑂 + 25 ∙ 𝐶𝐻2																																		(15) 
 
More in detail, carbon dioxide emissions comprise emissions due to mechanical cropping operations 
(Ribaudo, 2011) and soil organic carbon (SOC) estimation; methane emissions are due to livestock 
enteric fermentation and rice cultivation; nitrogen emissions include animal manure management, 
synthetic fertiliser application and atmospheric deposition (Solazzo et al. 2016).  
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The water consumption measurement uses the Water Footprint Network, based on the extensive work 
of Mekkonnen and Hoekstra (Mekonnen and Hoekstra 2010) that estimates the water footprint of 147 
crops and over 200 products, and which also calculates the water footprint at national and sub-national 
level of each crop worldwide.  
 

2.4. Data 
Emilia-Romagna plays a significant role in Italy's agricultural landscape with 1.045 million hectares of 
UAA in 2020 (8.36% of the national UAA), representing 46.6% of the regional area, and 53,753 active 
agricultural businesses. Intensive agricultural practices continue to play a crucial role in the region's 
agricultural output, particularly dairy farming, contributes significantly to greenhouse gas emissions. 
The data used in this study are the individual farms included in the RICA (FADN) sample (CREA, 
2021), of the Emilia-Romagna (NUTS2) Region. It counts 867 farms out of the 11,040  sampled farms 
across Italy. In the RICA sample a weight is associated to each farm to account for scaling up at the 
regional level for a total of 43,435 farms. This number is considerably lower than the census one as the 
FADN survey covers only those farms exceeding a minimum economic size. Table 1 illustrates the 
distribution of farms after calibration based on their agricultural practice and their utilised agricultural 
area.  
 

Farms agricultural practice Number of farms after calibration UAA (ha) 

Organic Farms 3,195 122,056 

Conventional Farms 28,423 526,685 

Total Farms 31,619 648,742 

% of Organic Farms 10.11% 18,81% 

Table 1: Number of Farms according to size class (ha) and management practices. 

The set of farm data includes information on geographical location (region, province, altitude, agrarian 
region), household characteristics (age and gender of the farm holder, number of potential farm holder’s 
successors), land use, specific production costs per crop (cost of seeds, fertilisers, pesticides, energy, 
water), gross total product, and CAP payments.  
Although similar to the European sampling, the Italian FADN is notably more comprehensive, 
considering over 2,500 variables for each sampled farm, in contrast to the European FADN, which only 
takes into account approximately 1,000 variables (CREA, 2021). The “agrarian region” spatial definition 
is a peculiarity of the FADN and it further segments Italian provinces (NUTS3) based on geographical 
location and altitude range. This dimension play a crucial role in constraining the land transfer between 
neighbouring farms, as as explicated in the antecedent section (Equations 9 - 14).  
 

2.5. Policy scenarios 
In the AGRISP simulation module, two scenarios are implemented: 
i) The “organicland” scenario, wherein payments encourage farm holders to opt for organic agricultural 
practices, with the objective of expanding the area under organic agriculture to 25%, in accordance with 
the Farm to Fork strategy target. The level of payment is assigned per crop, following the regional Rural 
Development Plan 2014-2020. In this scenario, an adjustment on yield and prices, going from 
conventional to organic, is also considered. 
ii) The “fert” scenario models a decrease of 20% in the expenditure on fertilisers for conventional farms. 
Given that the RICA database does not distinguish between organic and chemical fertilisers, it is 
assumed that conventional farms utilise only chemical fertilisers. Here, a 20% reduction is applied, 
leaving the fertiliser expenditure for organic farms unchanged. Additionally, a very conservative 
approach is adopted regarding the impact on yield, estimating a yield loss of 15%, with the exception of 
alfalfa, where chemical fertiliser is presumed not to be used. 
Both scenarios are compared to a baseline (scenario “land”), where rules permit farmers to exchange 
land through renting or leasing, which is a common practice to adjust farming operations without altering 
the proportion of land use significantly. The price of renting land is derived from the Land Market 
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Research of CREA-PB. The rent for arable land in Emilia Romagna in 2019 is estimated to be €607/ha 
(Land Market Research, CREA-PB 2021). Greening measures of the previous CAP reform are also 
included: crop diversification, maintenance of permanent grassland, and the establishment of Ecological 
Focus Areas are simulated (European Commission 2017). 
 
 

3. RESULTS 
 

3.1. Impacts on land use 
Table 2 depicts the impact of the 2 scenarios on the portion of land allocated to organic farming.  
 

Organic surface (ha) s_land s_organicland s_fert 

Organic surface 126,309  269,554  115,550  
Conventional surface 522,433  379,188  533,192  
Total surface  648,742   648,742  648,742  
% of Organic surface 19.47% 41.55% 17.81% 

Table 2: Impact on Organic Surface (ha). 

As expected, the “organicland” scenario shows a substantial policy-driven increase in the area under 
organic farming, in line with the goal of reaching 25% of the total agricultural surface to align with the 
Farm to Fork strategy. However, the organic surface area reaches 41.55%, which exceeds the target, 
suggesting either an overachievement of the policy's objectives or a potential overestimation in the 
simulation, where the payment level assigned per crop represents a strong incentive for this significant 
conversion to organic farming. 
Contrasting with the “organicland” scenario, the “fert” scenario reflects a reduction in expenses on 
chemical fertilisers by 20% for conventional farms. This scenario assumes that only chemical fertilisers 
are used by conventional farms, and thus the decrease in expenditure doesn't affect organic farms. 
Interestingly, this scenario results in a slight decrease of the percentage of organic surface area on the 
total agricultural surface (-1,66%), probably due to the fact that organic products prices are not yet 
competitive. The conservative approach taken, estimating a 15% yield loss on crops might suggest that 
some farmers revert to conventional methods or are less incentivised to switch to organic, given the 
reduced cost of conventional inputs. In other words, in the absence of subsidies, the convertion to organic 
farming results to be not economically convenient for conventional farms. 
 

3.2.Structural changes 
Similar trend can be noticed in the impact of the scenarios on the number of farms. Structural changes 
are captured by the ABM rule that allows farms to rent or lease land as a result of new market scenarios 
or specific policies interventions (Table 3). 
 

Organic Farms (number) s_land s_organicland s_fert 

Organic Farms 2,856 7,113 2,904 
Conventional Farms 25,292 20,363 25,017 
Total Farms  28,148 27,475 27,921 
% of Organic Farms 10.15% 25.89% 10.40% 

Table 3: Impact on Number of Farms (weighted). 

Organic holdings would increase from 10.15% to 25.89% of the total number of farms. However, this 
expansion would lead to an overall reduction, 673 farms less, at detriment of the conventional holdings. 
Adopting the organic technique would be conventional farms that convert to organic and increase their 
productive size by acquiring land from other farms that would close down. Interesting to note is that 
organic farms own an average area approximately double than conventional farms, as they must 
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guarantee enough land for crop rotations; nevertheless, in the organicland scenario a reduction in the 
regional average of UAA of organic farms is depicted (from 44 to 38 hectares). 
The fertiliser reduction scenario does not deviate much from baseline, showing only a modest increase 
in the number of organic farms (+48) but would represent a substantial decrease in conventional farms 
(-275), probably due to the yield loss. Overall, we count 227 farms that would stop their activities by 
transferring whole their land to other farms, and a decrease in the regional average of UAA of organic 
farms (from 44 to 40 hectares). 
To better understand and assess the economic and structural dynamics, we divided the sample into decilis 
(Table 4). The analysis of the weighted sample reflects the productive structure of the agricultural system 
in the Emilia-Romagna region, where 87.84% of farms are concentrated in the 1st decile. This class of 
holdings, comprising over 24,700 farms, representing the backbone of the regional agricultural system. 
The second-largest class of farms, in the second decile, represents 9.21% of farms. 
 

Farm Decile Farm Size (ha) s_land s_organicland s_fert 
1 0-55 24,726 23,995 24350 
2 55-110 2,591 2,630 2650 
3 110-165 518 537 608 
4 165-220 122 129 122 
5 220-275 36 30 0 
6 275-330 30 30 66 
7 330-385 80 0 80 
8 385-440 12 91 12 
9 440-495 16 16 16 
10 495-550 18 18 18 
Total  28,148 27,475 27,921 

Table 4: Number of Farms per class. 

In the “organicland” scenario we notice that the most impacted farms are the small ones (first decile) 
that would cede their land to other farms or increase their surface and move to an higher class (731 farms 
less in class 1).  
The “fert” scenario report a significant decrease in class one (-351 farms) that would lead to an increase 
of class 2 and 3. No impact is depicted in large farm types, suggesting that the yield decrease for these 
farms is balanced out by the decrease in fertiliser cost. 
 

3.3. Economic impact 
The GM of the weighted sample of farms in the Emilia Romagna Region is estimated by the model at 
1,125 million Euro (Table 5). The introduction of a subsidy in favour of organic farming would allow a 
further increase of 133 million Euro (11.82%), while the reduction in the use of fertilisers would 
represent only a modest increase in the regional GM (+2.08%). The distribution of the regional GM by 
deciles allows a deeper analysis of the economic characteristics of the companies in the sample. 
 

Farm Decile Farm Size (ha) s_land s_organicland s_fert 
1 0-55  466,642,702   488,297,279   438,878,619  
2 55-110  410,492,017   456,560,976   420,820,654  
3 110-165  112,331,061   155,081,649   138,680,698  
4 165-220  24,328,018   28,327,777   31,051,895  
5 220-275  11,795,037   11,059,807   -    
6 275-330  10,276,011   10,997,140   25,412,231  
7 330-385  64,817,448   -     69,087,240  
8 385-440  5,749,889   89,054,242   5,521,034  
9 440-495  13,290,430   13,290,430   13,727,827  
10 495-550  5,357,266   5,442,698   5,324,393  
Total   1,125,079,878   1,258,111,997   1,148,504,590  

Table 5: Total Gross Margin (weighted sample) divided per class. 

Under this “organicland” scenario, the GM augments for nearly all farm sizes, implying that the policy 
measures to foster organic farming are efficacious in enhancing the profitability of farms across the 
majority of size classes. This is particularly evident for larger farms (over 165 ha), which appear to 
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benefit markedly from the organic transition, likely due to the advantages of scale and the heightened 
payments per crop as stipulated by the regional Rural Development Plan. 
The average GM per farm in the sample is 39,970 Euro and it reflects the structure of the FADN sample 
considering the high concentration of companies in the first decile. In the “organiland” scenario the 
average GM per farm increase by   
In the GM per farm would increase by 14.56% with significant increases for all farm types up to class 
8, where the increase of 99.16% is due to the shift of farms to that class from the previous one. Large 
farms GM does not seem to be significantly impacted (Table 6). 
The reduction in fertiliser use would lead to a reduction in GM per farm in the first, eighth, and tenth 
deciles, where a decrease in GM/Farm of 4.5%, 3.98%, and 0.61%, respectively, is observed. Despite 
this decrease, result highlights an overall increase, probably due to the redistribution of farms between 
classes, regardless lower production levels.  
 

 Average GM/Farm Average GM/AWU 
Farm Decile s_land s_organicland s_fert s_land s_organicland s_fert 

1  18,873   20,350   18,024   13,421   14,389   12,897  
2  158,414   173,610   158,818   49,079   51,026   49,578  
3  216,949   288,565   228,168   46,368   62,089   41,311  
4  198,993   219,833   253,992   37,642   42,201   47,842  
5  325,143   372,744  -  126,361   161,726   -    
6  346,328   370,632   385,339   95,329   102,019   126,342  
7  814,194   -     867,828   101,520   -     108,208  
8  489,445   974,792   469,964   86,322   126,304   82,886  
9  846,482   846,482   874,340   138,314   138,314   142,866  
10  298,896   303,662   297,062   106,748   108,451   106,093  
Total  39,970   45,791   41,134   23,808   26,723   24,141  

Table 6: Average Gross Margin per Farm and per Annual Working Unit (weighted sample). 

The GM/AWU analysis provides insight on the impact of the reforms on household income and thus on 
the quality of life of farmers and their families. The average GM/AWU in the reference scenario is 
€23,808, with considerable differences among the farm types described by the deciles. Class 1 represents 
the type with the lowest GM/AWU (€13,421), while class 9 represents the farm type with the highest 
GM/AWU (€138,314). 
The introduction of the "organicland" scenario would result in a significant improvement in the 
GM/AWU for the majority of farms, with the exception of those in class 9, where there would be no 
change. The shift to greener agriculture with the reduction of fertilisers would not change much the 
average GM/AWU at a regional level (+1.4%), generating however a diversified effect among the farms 
in the sample, with a reduction for farms in the first, third, eighth, and tenth deciles. In particular, farms 
in the third decile would experience a significant worsening (-10.91%), while farms in this decile would 
find the organic scenario particularly advantageous. 
In terms of subsidy distribution (Table 7), at the regional level, the average subsidies received per farm 
in the reference situation amount to €6,719 per farm, with significant variations among farm types where 
subsidies increase with farm size. Analysis of subsidy dynamics enables us to understand how direct 
payments to farms are the primary factor driving farms to transition to organic farming.  
In the “organicland” scenario, payments per farm would increase by 67.45% for the entire sample. 
Certain farm types would benefit notably. Specifically, payments would rise by over 80% for farms in 
the 2nd, 3rd, and 4th deciles, doubling for farms in the ninth decile.  
Even in the scenario involving a reduction in fertilisers, subsidies would increase, albeit to a much lesser 
extent than in the previous scenario (on average, the regional-scale increase is 2.5%), with varied trends 
among deciles. Farms in the second, and eighth deciles would experience a slight decrease in received 
subsidies, whereas in the sixth decile a subsidies increase by 50% due to farms relocation from the fifth 
to the sixth decile. 
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 Average Payments per Farm Variation (%) from Baseline (s_land) 
Farm Decile s_land s_organicland s_fert s_organicland s_fert 

1  4,005   6,540   4,013  63.30% 0.18% 
2  20,122   36,910   19,111  83.43% -5.02% 
3  31,814   57,331   32,572  80.20% 2.38% 
4  41,281   74,730   45,315  81.03% 9.77% 
5  60,147   91,449   -    52.04% -100.00% 
6  59,946   95,984   89,787  60.12% 49.78% 
7  90,244   -     93,089  -100.00% 3.15% 
8  58,944   15,106   58,905  -74.37% -0.07% 
9 130,912   264,900   131,227  102.35% 0.24% 
10 141,738   199,770   141,738  40.94% 0.00% 
Total  6,719   11,251   6,888  67.45% 2.51% 

Table 7: Average Payments Distribution in € and Variation from Baseline. 

 
3.4. Analysis using the Gini coefficient 

The Gini coefficient measures disparities in the income level of the agricultural population by assessing 
the concentration of total income within the population. It quantifies the degree of statistical dispersion 
of transferable variables, such as income, between different units of the same population. Thus, it enables 
the assessment of equity in the distribution of farmers' income. The coefficient ranges from 0 (perfect 
fairness, all farms enjoy the same income level) to 1 (complete unfairness, where only one farm receives 
the entire income). Mathematically, it is defined based on the Lorenz curve, which illustrates the 
proportion of total population income (y-axis) cumulatively earned by the bottom x% of the population. 
The Gini coefficient is often calculated for various years but is used in this analysis to compare the real 
situation with the one simulated by the two described policy scenarios. By comparing the Gini coefficient 
between the reference scenario and the two policy scenarios, we can evaluate the effectiveness of the 
policy measures in reducing income concentration, i.e. income inequality. 
The simulated situation also reveals existing income gaps between farms in different groups under the 
two scenarios. The analysis then considers to what extent the average support provided to various groups 
through different CAP interventions can narrow the income disparity gap. 
The Gini index concerning the distribution of GM per farm is relatively unconcentrated (Table 8), with 
a value of 0.475. However, this value changes due to the two considered agri-environmental scenarios, 
increasing by 5.23% and 6.08% respectively.  
 

Scenario Gini Index (GM/Farm) Variance % 
land 0,475 - 
organicland 0,500 5,23 
fert 0,504 6,08 

Table 8: Gini Index GM/Farm and Variance. 

 
Figure 3: Gini Index GM/Farm. 

 
Figure 3 highlights the varied capacity of farms to generate income based on their structural 
characteristics, economic endowment, and technological capacity. Gini index values just below 0.5 
indicate an average GM/farm distribution, indicating relatively little heterogeneity in income generation 
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ability. The fertiliser scenario, as seen from the previous data, penalises farms in certain deciles 
(especially the first and third), reducing their productive capacity and significantly increasing income 
distribution inequality. The relevant parameter for assessing the measure's effectiveness for equitable 
income distribution is the GM/AWU. Calculations indicate that income per employee is much more 
evenly distributed than income per farm. The Gini index is 0.229 in the baseline scenario, indicating 
uniform distribution within the first quartile. The policy scenarios analysed would worsen income 
distribution, concentrating it by 0.7% and 7.7% respectively. Despite this slight worsening, income 
distribution per employee remains within the first quartile. This finding is significant as it indicates 
uniformity in income-generating ability across different structural and economic characteristics, 
mitigating the impact of the two scenarios on income distribution (Figure 4). 
 

Scenario Gini Index (GM/AWU) Variance % 
land 0,229 - 
organicland 0,230 0,69 
fert 0,246 7,71 

Table 9: Gini Index GM/AWU and Variance. 

 

 
Figure 4: Gini Index GM/AWU. 

 
Considering the role of payments in determining farm production choices, evaluating the distributional 
effects of scenarios in terms of payment distribution equity is interesting. The Gini index in the reference 
condition (land) indicates a higher concentration among firms compared to GM/AWU but remains 
acceptable (Table 10). The two policy scenarios increase subsidy distribution inequality between deciles 
(+2.43% and +37.41% respectively), exceeding the second quartile distribution threshold (Figure 5). 
 

Scenario Gini Index Subsidies/Farm Variance % 
land 0,367 - 
organicland 0,375 2,43 
fertiliser 0,503 37,41 

Table 10: Gini Index Subsidies/Farm and Variance. 

 
Figure 5: GIni Index Subsidies/Farm. 
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3.5. Environmental impacts 
The environmental impact of the CAP post-2020 reform on climate change can be evaluated in terms of 
GHG emissions and water consumption per agricultural activity.  
The “organicland” scenario shows an increase of approximately 4.20% in total carbon emissions and a 
decrease in total water consumption by approximately 3.34%. 
The “fert” scenario shows, on the other hand, a more modest increase of approximately 1.51% in total 
carbon emissions and a limited impact on the water resource of approximately 0.96% (Table 11 and 
Figure 6). 
 

 
Table 11: Environmental Impact (detailed per crop). 

 
Figure 6: Environmental Impact on Emission and Water Footprint. 

 
This analysis indicates that shifting to organic farming practices (s_organicland) increases carbon 
emissions slightly but reduces water consumption. On the other hand, the reduction in fertiliser usage 
(s_fert) leads to a minor increase in both carbon emissions and water consumption, though the increase 
in emissions is smaller than in the organic scenario. 
To identify which crops are most impacting these results, we look at the variations in emissions and 
water consumption per crop for each scenario and compare them to the baseline.  
For the “organicland” scenario, the crops with the most significant environmental impact are: 
Oilseed which has the largest increase in both carbon emissions and water consumption, with 
approximately 177.73% increase in emissions and a 178.07% increase in water consumption compared 
to the “land” scenario, however its prodcution is very limited. Sorghum experiences a 57.14% increase 
in emissions and a 57.37% increase in water consumption, and soybeans shows a 34.25% increase in 
emissions and a 34.20% increase in water consumption. Sunflower indicates a 32.24% increase in 
emissions and a 32.18% increase in water consumption. 
For the s_fert scenario, the crops with the most significant impact are: Again, sorghum is the most 
impacted with a 99.11% increase in emissions and a 100.29% increase in water consumption. Silage 

T CO2 eq/Ha 
Product s_land s_organicland s_fert - s_land s_organicland s_fert s_land s_organicland s_fert
BEET 38,700           38,100           36,600           1.4457 56,000           55,100           52,800           5                    5                    5                    
CER 1,490             1,770             1,190             1.3276 1,980             2,350             1,580             8                    9                    6                    
D_WHEAT 45,900           54,100           42,900           1.6633 76,300           89,900           71,300           55                  64                  51                  
FRG 6,340             6,460             4,820             0.6700 4,250             4,330             3,230             59                  61                  45                  
C_WHEAT 68,900           63,500           66,800           1.5541 107,000         98,800           104,000         82                  76                  80                  
SUNFL 8,560             11,300           8,000             0.8188 7,010             9,270             6,550             17                  23                  16                  
PROT 13,300           12,900           10,300           1.0435 13,900           13,500           10,800           107                104                83                  
MAIZE 31,400           34,700           29,800           3.5235 111,000         122,000         105,000         22                  24                  21                  
ALFA 263,000         248,000         273,000         0.5026 132,000         125,000         137,000         2,470             2,320             2,550             
SILAGE 13,500           14,700           18,700           1.7676 23,800           26,000           33,000           9                    10                  13                  
OIL 234                649                226                0.8188 191                531                185                3                    7                    3                    
BARLEY 11,700           9,320             9,210             0.9876 11,500           9,200             9,100             14                  11                  11                  
POTATO 4,780             4,980             5,440             2.2735 10,900           11,300           12,400           2                    2                    3                    
TOMATO 23,800           25,600           29,000           2.1134 50,400           54,200           61,300           2                    3                    3                    
GRAZ 71,200           61,800           61,000           2.2397 138,000         139,000         137,000         552                554                547                
RICE 1,820             2,060             1,920             8.4969 15,400           17,500           16,300           2                    2                    2                    
SOJA 31,400           42,200           30,200           0.8096 25,400           34,100           24,400           42                  57                  40                  
SORG 8,410             13,300           16,800           1.3276 11,200           17,600           22,300           7                    11                  14                  
TOT ARABLE 644,434         645,439         645,906         - 796,231         829,681         808,245         3,459             3,343             3,492             

Surface (hectars) Carbon Emission (1,000 tCO2 eq) Water FP (Million m3)
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records a 38.66% increase in emissions and a 38.23% increase in water consumption. Tomato has a 
21.63% increase in emissions and a 21.86% increase in water consumption, while potato shows a 13.76% 
increase in emissions and a 14.10% increase in water consumption. Rice, the most emmitting crop in the 
sample, shows a 5.84% increase in emissions and a 5.64% increase in water consumption. 
These crops are triggering the most significant changes in the environmental impact for each scenario. 
It's important to note that for both scenarios, sorghum appears to have a substantial increase in both 
carbon emissions and water consumption, making it a key factor in the overall environmental impact. 
The analysis suggests that changes in the cultivation of these particular crops have the potential to greatly 
influence the environmental outcomes of the agricultural practices modeled in these scenarios. 
 
 

4. DISCUSSION AND CONCLUSION  
Income support interventions, by strengthening farm incomes as part of the Common Agricultural 
Policy, play a pivotal role in achieving Specific Objective 1 (SO1). On the other hand, the application 
of strict environmental criteria and the support of a more sustainable agricultural system, such as organic 
farming, also impact farm income and its distribution among farm types, potentially reducing the 
effectiveness of SO1. Hence, a potential trade-off between SO1 and SO5 should be considered to find a 
balance between economic sustainability and environmental protection. 
The purpose of this study is to determine whether changes in policy towards meeting the objectives of 
SO5 also align with or contradict the objectives of SO1.  
To better understand the effects of agri-environmental policies, it is crucial to evaluate income 
distribution to assess equity and whether the analyzed policy measures (organic and fertiliser reduction) 
affect it, making it more or less concentrated (and therefore fairer or unfairer) in some deciles. The Gini 
index helps assess the equity of policy measures by determining whether they increase or decrease 
income distribution inequality among farmers and their households, represented by the AWU. 
Overall, these scenarios indicate that financial incentives and cost reductions can have a notable impact 
on farming practices. The "organicland" scenario demonstrates a proactive push towards organic farming 
through financial incentives, while the "fert" scenario shows a reactive shift due to reduced input costs 
for conventional farming. Both are measured against a baseline that allows for flexibility in land 
management through rental agreements.  
The contradiction arises when the methods to achieve SO1 potentially increase the environmental 
footprint of agriculture, which would be at odds with the environmental and resource efficiency goals of 
SO5. 
Intensive farming practices that support farm income can lead to overexploitation of resources and 
increased chemical usage, thus harming the environment. Nutrients such as nitrogen, potassium, and 
phosphorus, essential for crop production, when used excessively, can be a major source of air, soil, and 
water pollution, and can also have negative impacts on both biodiversity and the climate.  
Analysis of the model results shows that farmers, in deciding to convert to organic, also change, to some 
extent, their crop planning in search of greater added value, opting for more impactful crops. It is here 
where we must look for the cause of a 4.20 percent increase in emissions in the "organicland" scenario. 
In the scenario of reduced fertilizer use, this impact, although still present, decreases thanks to a shift in 
crop cultivation towards alfalfa, which maintains the same level of yield, as it is not subject to heavy 
fertilization and therefore not impacted by the scenario.  
 
Another way of interpreting these results should be sought in the methodology applied and in some 
current limitations of the model that we intend to overcome in future studies. One limitation relates to 
the calculation of emissions using CO2 indicators without taking into account the effect of agro-
ecological practices on soil organic matter, with a consequent positive impact in terms of CO2 
sequestration. Another limitation is that we do not modify the calculation of the grey water footprint for 
conventional production as a result of the decrease in the use of chemical fertilizers. Furthermore, an 
additional scenario could be added to estimate a lower yield decrease in the long term, knowing that the 
decrease in chemical fertilizer leads in the long run to soil enrichment. 
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