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Abstract

While there is a broad literature on the impact of information technologies (IT) on the
economic performance of different industries, only a few studies have looked at the
environmental effect of IT adoption in agricultural production from an economic
perspective. This study aims to investigate the effect of smartphone use on
environmental efficiency based on a cross-sectional dataset covering 449 maize
farmers in Henan, Shandong, and Gansu Provinces, China, in 2017. The translog
hyperbolic distance function with stochastic frontier (SF) model is employed to assess
environmental efficiency. Greene’s (2010) selectivity-bias-corrected SF approach is
used to examine how smartphone usage affects environmental efficiency, accounting
for the selectivity bias arising from unobservable factors. Our results show that
greenhouse gas (GHG) emissions from maize production are, on average, 876.1
kgCe/mu, and the mean environmental efficiency of maize production is 0.83.

Keywords: Smartphone use; Environmental efficiency; Selectivity bias; Stochastic
Frontier model; Translog hyperbolic distance function; Greenhouse gas emissions.



1 Introduction

There is a consensus that information and communicate technologies (ICT) adoption
could help disseminate agricultural marketing information fast and at a low cost (H.
Zheng et al. 2021; Michels et al. 2020; Aker and Ksoll 2016) . The widespread
adoption of ICT in developing countries such as China can reduce the information
asymmetry of agricultural markets. The number of rural Internet users in China has
reached 225 million, and the Internet penetration rate increased from 32% in 2015 to
38% in 2018 (CNNIC 2019). More than 95% of Internet users in rural China access
agricultural information through smartphone applications (Ma and Zheng 2021), such
as weather reports, the comparison of the price and quality of agricultural inputs, and
relevant news and videos about new sustainable agricultural technologies.

Our objective is to examine the effect of smartphone use on the environmental
efficiency of maize production. Farmers and policymakers usually ignore the
undesirable by-products in agricultural production because it is hardly marketed and
priced. Therefore, a more appropriate tool for estimating environmental efficiency
would be a composite index, which simultaneously allows the undesired outputs to be
reduced and the desired outputs to be increased. We utilize the translog hyperbolic
distance function (HDF) in the stochastic frontier (SF) framework to assess the
environmental efficiency of maize production based on a sample of 449 farm
households in the 3 main corn-producing provinces in China. We also apply Greene’s
(2010) SF approach with full information maximum likelihood estimation (FIMLE)
to analyze the unbiased impact of smartphone use on environmental efficiency,
accounting for the selectivity bias from unobserved factors.

Environmental efficiency is derived from distinguishing between desirable outputs
and undesirable outputs based on distance functions, which can be further calculated
by parametric (stochastic frontier analysis, SFA) or nonparametric (data envelopment
analysis, DEA) approach (Adenuga et al. 2019; Färe et al. 2007; Färe & Grosskopf
2000; Reinhard et al. 2000; Cuesta et al. 2009; Picazo-Tadeo et al. 2012). For example,
Cuesta et al. (2009) introduced the properties of the conventional output distance
function and hyperbolic distance function within a parametric stochastic framework to
calculate environmental efficiency with SO2 emissions by the U.S. electricity industry
with the application of country-level panel data. Adenuga et al. (2019) applied the
hyperbolic distance function with SF model in a dairy farm to analyze the
environmental efficiency and consequently estimated the shadow price of N surplus
using panel data from the island of Ireland.

Previous studies have also shown that ICT, such as the Internet and smartphone use,
has direct effects on the environment. Especially in agricultural production, Internet
use could help reduce the overuse of environmentally detrimental inputs, such as
chemical fertilizers and pesticides, which could improve agricultural sustainability



(Ma and Zheng 2022; Pitt et al. 2011; Yuan et al.2021; Zhao et al. 2021; Kaila and
Tarp 2019). They suggested that ICT adoption, such as Internet use or smartphone use,
can improve agricultural sustainability via transaction cost reduction, easy access to
market information, government services, and information about refraining from the
usage of environmentally detrimental inputs and reduce the pollutants to alleviate the
climate change (Deichmann et al. 2016; Li et al. 2022; Munyegera and Matsumoto
2018) . However, the environmental effect of ICT adoption on the environmental
efficiency of agricultural production, from the economic perspective, has hardly been
analyzed.

The rest of the paper is structured as follows. In Section 2, we present the theoretical
framework and methods used in the research, and we also provide a detailed
description of data and empirical specification models in Section 3. We explain and
discuss the empirical results in Section 4. Section 5 concludes with consequent policy
implications.



2 Theoretical Framework

We present the theoretical model for our study in this section, which allows us to
assess the environmental efficiency of maize production by incorporating GHG
emissions as an undesirable output into the translog hyperbolic distance function with
parametric SF framework. We also describe the Greene’s (2010) SF model, which
allows us to evaluate the impact of smartphone use on environmental efficiency after
correcting the potential self-selectivity bias.

2.1 Environmental efficiency (EE) estimation

We applied the translog hyperbolic distance function (��) to undesirable outputs to
estimate the environmental efficiency of maize production, which can be expressed
as:

�� �, �, � = ��� � > 0 | �, �
�
, �� ∈ � (1)

where �� �, �, � , � is a vector of input quantities, � is a vector of output
quantities, and � represents the output possibility set in Eq. (1). � indicates the
degree of the same proportional changes of the desirable and undesirable output in
opposite directions. Thus, it returns a non-negative value smaller than one for
inefficient sets of �� �, �, � , or it returns a value of one for fully efficient sets of
�� �, �, � . The general form of the translog hyperbolic distance function can be
expressed as presented in Eq. (2).

�� �, ��, �−1� = ��� �, �, � , � > 0 (2)

The almost homogeneity condition of the hyperbolic distance function implies that if
the desirable outputs increase at a given proportion, the undesirable outputs will
decrease, and the distance function will increase by the same proportion, given the
constant level of all inputs. Furthermore, it is non-decreasing in desirable outputs,
�� �, ��, � ≤ �� �, �, � , � ∈ 0,1 ; non-increasing in undesirable outputs
�� �, �, �� ≤ �� �, �, � , � ≥ 1 and non-increasing in inputs �� ��, �, � ≤
�� �, �, � , � ≥ 1. Then, imposing the almost homogeneity condition by setting

� = 1
��

(��, the Mth output), it can be transformed as given in Eq. (3).
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After taking log in Eq. (3),
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The stochastic frontier analysis (SFA) framework enable us to estimate the frontier of
best production practices, which assumes that there is an inefficiency term and a
standard error term. Following Cuesta et al. (2009) and Adenuga et al. (2019), we
get the specification of the translog hyperbolic distance function in Eq. (5).
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where ���∗ = ���
����

and ���
∗ = ��� ∗ ����. α, β, γ, δ, ψ, and μ are parameters to be

estimated. Assuming that � ≡− ���� ��, ��, �� ≥ 0 follows a half-normal or

truncated normal distribution (i.e., � ~ �+ �, ��2 ) and another disturbance term v

follows a normal distribution (i.e., � ~ � 0, ��2 ). The stochastic translog hyperbolic

distance function model can be specified as given in Eq. (6).
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� and � in Equation (6) should be conditionally independent; the inefficiency term
and a disturbance term account for statistical noise. Environmental efficiency can be
calculated by u =− ln�� and expressed by E[exp( − u)].



2.2 Sample selection correction model

The original SF model with the composed error term can be written as follows
(Aigner et al. 1977; Meeusen et al. 1977):

�� = ��� + �� − ��
�� = �� �� , ��~� 0,1

υ�~N 0, ��2 (7)

where �� is the logarithmic output quantity of each farm �; �� is the vector of input
quantities in logarithmic form; � denotes the vector of parameters to be estimated;
�� denotes the statistical noise (random variations) with variance ��2 ; �� represents
the inefficiency term with scale parameter σ�; and �(.) indicates normal distribution.

To correct the sample selection bias, the SF model can be conducted using various
techniques. For example, Greene (2010) utilized the maximum simulated likelihood
(MSL) approach. However, we use the full information maximum likelihood (FIMLE)
(Dakpo et al., 2021) , which is more appropriate than MSL, considering undesirable
outputs with the hyperbolic distance function.

Following the FIMLE of Dakpo et al. (2021), the conditional density (on ��) of the
two-sided error disturbance �� is:

� ��|��, �� = 1
��
� ��−���+�� ��

��
(8)

where � is the density function of the standard normal distribution, and �� ∈
0, ∞ . The log-likelihood function can be obtained by integrating the density in

Equation (13) over the range of �� . Thus:

���� ��|�� = ��� ��
1
��

� � ��−���+��� ��
��

� �� � �� (9)

where � �� = 2� �� . The canonical form of Heckman’s (1979) two-step model
for the correction of sample selection bias is:

�� = ��� + ��
��
∗ = ��� + �� (10)

where ��
∗ denotes a latent (unobserved) variable; �� denotes a vector of explanatory

variables; γ represents parameters to be estimated; and �� is an error term
accounting for statistical noise. The second one in Eq. (10) is the selection equation
model using a probit model to estimate, where [D� = 1(D�∗ > 0) ∧ D� = 0(D�∗ ≤
0)] based on the utility maximum theory.

More importantly, values of y and x are only observed when D� = 1 , and where �2



is the bivariate normal distribution. Since Heckman’s two-step approach is
inappropriate for nonlinear models, such as the translog production function (Greene,
2010) , we use FIMLE (Maddala, 1983) to estimate environmental efficiency for
correcting its sample selection bias:

�� = ��� + �� − ��
��
∗ = ��� + ��

v,w ~�2
0
0,

��2 ���
��� ��2 = 1

(11)

where � indicates the correlation between �� and �� capturing the sample selection
bias. The full information likelihood is built up from Prob(selection) ×
density|selection for selected observations and Prob(non − selection) for non-selected
observations. Thus, the conditional (on ��) density can be written as:

Li = di f yi xi , Ui , wi > − �'zi P wi >− �'zi + 1 − di P wi ≤− �zi (12)
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where Φ is the cumulative distribution of the standard normal distribution. The
log-likelihood function of the model specified in (12) is obtained by integrating the
density in (13) over the range of |Ui|, where �� = �� − �'�� + �� �� . Thus, we have:

f yi xi , Ui , wi > − �'zi = � �� − �'�� + �� �� Φ
�
��
(��−�'��+�� �� )+�'��

1−�2
(14)

To maximize the log-likelihood function (14) based on a hybrid two-step limited
information maximum likelihood (LIML) estimation, the log-likelihood function to be
maximized is simplified as follows (with �� ∈ 0, ∞ ):

logf ���� = ��� ��
� �� − �'�� + �� �� Φ

�
��
(��−�'��+�� �� )+��

1−�2
� ��� (15)

where the observations for non-adopted (�� = 0) do not contribute information about

the parameters, so that 1 − �� Φ �� = 0 , and �� = �'��� . To account for sample

selection, the estimation of environmental efficiency follows Greene (2010), then
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where P ���� denotes the probability and �� = �� − �� and �� = �� �� . Therefore,
�� ∈ 0, ∞ . The denominator of formula (16) is obtained as the predicted value of
f (����) in Equation (15). The numerator’s integral is solved with the parameters
obtained from maximizing Equation (16). Finally, environmental efficiency is
computed as exp[ − E�[u�|ε�]].



3 Data and Empirical Framework

Cross-sectional data collected by a farm household survey in three major
maize-producing provinces in China in 2017 were used in this paper to estimate the
effect of smartphone use on environmental efficiency. China is the second largest
maize-producing country, producing 274 (million tons) in 2022, compared with the
biggest maize-producing country, the United States, with 352.9 (million tons) in 20221.
Maize is mainly produced in Northern China, covering three provinces in
Northeastern China (Heilongjiang, Jilin, Liaoning), Shandong, Henan, Hebei, Gansu,
Ningxia, Shaanxi, Inner Mongolia, and Shanxi provinces.

The collected information on household demographics and assets, maize production
and sale activities, and access to information (e.g., smartphone use) are used to
answer our research question. Furthermore, well-trained enumerators recruited from
local universities in each province conducted face-to-face interviews with a total of
499 farmers in the selected villages. After cleaning the missing values and extreme
values of some observations, we finally used a total of 449 maize farmers, and the
validity of this survey is 90%. Smartphone use is defined as a binary variable in this
study, which is consistent with previous studies (smartphone papers). Of the 449 farm
households interviewed in this survey, 292 are smartphone users, and the other 158
are nonusers and they self-selected themselves to be smartphone users or nonusers.

In order to estimate environmental efficiency, we have to identify and calculate the
undesirable output first. The carbon footprint can be defined as a measure of the total
amount of carbon dioxide emissions that are directly and indirectly caused by an
activity or are accumulated over the life stages of a product (Wiedmann & Minx
2007) . While there are various specific definitions of carbon footprint in different
industries at different scales (Pandey et al. 2011) , the carbon footprint from maize
production is generally assessed by the total amount of GHG emissions which is
accumulated over the life stages of maize production.

Due to limited data, the carbon footprint from maize production can be measured by
the total amount of GHG emissions, including carbon dioxide (CO2) and indirect
nitrous dioxide (N2O) emissions, induced by chemical fertilizer usage, diesel fuel
usage, and openly burnt corn straw, which is accumulated over the life stages of maize
production. The GHG emission calculation equations based on the carbon footprint
method can be expressed as given in Eq. (17).

1 IndexMundi is a data portal that gathers facts and statistics from multiple sources and turns them into easy-to-use
visuals.Our mission is to turn raw data from all over the world into useful information for a global audience. We
capture statistics that are scattered or otherwise hidden and present them via user-friendly maps, charts, and tables
which allow visitors to understand complex information at a glance.
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where ��� refers to the total carbon footprint of corn production, GHG emissions

with unit (kg Ce/mu); ���� indicates the carbon dioxide emissions from all other

fertilizer usage with unit (kg Ce/mu) and ���2� denotes the direct N2O emission
from nitrogen fertilizer usage with unit (kg Ce/mu); ���� is the carbon dioxide
emissions from diesel fuel usage (kgCe/mu), and ���� represents the carbon dioxide
emissions from openly burning maize straw with unit (kgCe/mu).

The summary of total GHG emissions from maize production and the separate one
induced by chemical fertilizers, diesel fuel, and openly burnt maize straw, respectively.
GHG emissions from corn production (undesirable output) are around 876.1
kg  Ce/mu (GHG emissions with carbon equivalent), which is mainly caused by
chemical fertilizer usage with 772.5 kg  Ce/mu (GHG emissions with carbon
equivalent). The results suggest that it is important to take GHG emissions into
account in the analysis of environmental efficiency with a parametric SF model.



4 Results and Discussion

We estimate the environmental efficiency utilizing the translog hyperbolic distance
function with Greene’s (2010) selectivity-bias-corrected SF model to establish the
existence of any selection bias for farmers’ decisions to use a smartphone. First, the
factors affecting smartphone use are shown and discussed. Second, we present the
translog hyperbolic distance function with stochastic frontier estimation results for the
whole sample, sub-samples with selectivity bias correction, and without, respectively,
to explain the environmental efficiency among maize farmers given to consider the
potential self-selectivity for smartphone usage. Finally, environmental efficiency
scores for sub-samples with and without sample selection correction are shown and
discussed.

Environmental efficiency estimates using the conventional and
selectivity-bias-corrected HDF models are illustrated in Table 7, Figure 1 and Figure 2.
The mean environmental efficiency of maize production for all of 449 maize farmers
is 0.832, which is relatively high and ranges from 0.32 to 0.98. It suggests that maize
farmers can improve their production performance by increasing maize yield by
12.02% and simultaneously contracting GHG emissions by 16.8%. The statistical
description of environmental efficiency scores for the whole sample and subsamples
with and without selection bias correction are presented in Table 7 as well. It also
shows a disaggregation in the smartphone use situation. The mean environmental
efficiency score among smartphone users (0.86) is significantly higher than that
among nonusers (0.82), implying that smartphone users can increase environmental
efficiency by 4.89% (0.86-0.82)/0.82=0.489). This is in accordance with our
hypothesis that smartphone use can help improve the environmental efficiency of
maize production.



5 Conclusions

This study analyzed the role of smartphone use in enhancing environmental technical
efficiency, using cross-sectional data covering 449 farmers from three main
maize-producing provinces in China. We utilized a translog hyperbolic distance
function (HDF) with greenhouse gas (GHG) emission and the stochastic frontier (SF)
model to assess the environmental efficiency of maize production. We also used the
combination of Greene’s (2010) sample selection correction SF model and Dakpo’s
(2021) FIMLE to account for potential selectivity bias associated with unobserved
attributes. These approaches allowed us to estimate the unbiased and consistent
impact of smartphone use on environmental efficiency.

The empirical results revealed that smartphone use tends to enhance the
environmental efficiency (EE) of maize production in China. In particular, for both
conventional and sample selection SF model estimations, the results show that
smartphone users are more environmentally efficient than nonusers. Moreover,
relatively lower EE scores for smartphone nonusers and unchanged EE scores for
smartphone users are associated with the use of the sample selection SF model,
suggesting that there is no selectivity bias for users based on our available dataset.
This also means that in non-randomized studies, it is important to account for
selection bias because the significant result of the ρ parameter for users.
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