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Exploring the pesticide trap: Persistent and Transient pesticide inefficiencies in Swiss winter wheat 

production 

 

 

Abstract 

This article evaluates total pesticide inefficiency in the case of intensive Swiss wheat producers 

between 2009 and 2019. The total inefficiency is decomposed into a transient and a structural 

component. Moreover, we argue that the structural or persistent inefficiency results from path 

dependency in pesticide use which is also perceived as a ‘pesticides trap.’ The model is estimated in 

two steps. In the first step, consistent estimates of the pesticide input requirement are estimated using 

GMM. The different inefficiency components are obtained from the simulated maximum likelihood in 

the second step. Our results reveal that there is a high degree of persistent inefficiency when pesticide 

volume is quantified using load index and active ingredients. However, in the case of the treatment 

frequency index, we found no evidence of persistent inefficiency. 
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Exploring the pesticide trap: Persistent and Transient pesticide inefficiencies in Swiss winter wheat 

production 

Since World War II, pesticides have been unreluctantly associated with improvements in crop 

protection. Along with fertilizers, it is one of the critical agricultural inputs related to the increase of 

food production to face the challenge of an exponentially increasing global population. Pesticides' early 

effectiveness and relatively low cost have explained their extensive adoption, especially in developed 

countries. Despite their numerous beneficial effects, as documented in Cooper and Dobson (2007), 

many adverse effects are attributed to pesticides. These side effects include serious public health 

problems but also ecosystem deterioration and loss of biodiversity (Bolzonella et al., 2019, Elfikrie et 

al., 2020, Larsen et al., 2017, Pimentel and Burgess, 2014, Relyea, 2005, Stehle and Schulz, 2015, Tang 

et al., 2021).1 Thus the reduction of pesticide risks for humans and the environment is an explicit policy 

goal in various countries (e.g., Möhring et al. (2020)) and of increasing public awareness (e.g., Schaub 

et al. (2020)). 

Moreover, the overreliance on pesticides has implications for the long-run productivity of agricultural 

systems. For example, natural processes that govern agroecosystems (e.g., habitats for antagonists of 

pests) are disrupted, and pest resistance build-up, rendering them even more vulnerable (Savary et al., 

2019). In summary, while there is no doubt of the contribution of pesticides to higher agricultural 

productivity, it remains unclear to what extent structural inefficiencies in pesticide use reduce high 

productivity in the long run (Antle, 1988 p 1). 

                                                           

1 Those effects include fertility and reproductive issues, disruption of endocrine systems, and degenerative 

illnesses regarding human health. Environmental problems comprise contamination of soil, surface, and 

groundwater with the poisoning of micro-organisms and other vertebras and the decline of bees and pollinators.  
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In this paper, we quantify the inefficiency of pesticide use and identify structural inefficiencies involved 

in pesticide use, using panel data from Swiss wheat production. We posit that the existence of 

pesticides structural or persistent inefficiencies can be perceived as a ‘trap’ that can help explain 

dependency on pesticides use. Many direct and indirect factors can explain this dependency. Among 

these factors is pesticide resistance, which appears from long-term exposure to pesticides. Resistance 

leads to an increase in the dosage and rate of using the less effective pesticide (Popp et al., 2013), 

creating a vicious dependency circle. In addition, the disappearance of natural enemies has facilitated 

the emergence of secondary pests, leading farmers to use a broader range of pesticides at high dosage 

and frequency (Xu et al., 2008). Moreover, the alternatives to pesticides use may be riskier, knowledge-

intensive, and require different investments. All these reasons can explain pesticide's structural 

inefficiency, reflecting a systematic overuse of pesticides. 

Previous literature has documented the strong and increasing reliance of the agricultural sector on 

pesticides that may involve risk for humans and the environment (e.g., Dunn (2012), Enserink et al. 

(2013), Tang et al. (2021), Varah et al. (2020)). However, large crop production is still lost to pests 

(Oerke, 2006, Pimentel et al., 1993, Sharma et al., 2017). Pest pressure may even increase due to 

climate change as, for instance, warming temperatures affect the metabolic rate of insects (Deutsch 

et al., 2018, Pu et al., 2020). Previous studies have also discussed the possible transition into low- or 

no-pesticide production systems as well as the difficulties for farmers and other actors (Conway, 2005, 

Davis et al., 2012, Liu et al., 2014, Möhring and Finger, 2022, Naranjo et al., 2015, Way and van Emden, 

2000, Wilson, 2021). An overall remaining observation is that modern agriculture creates a strong path 

dependency on pesticides once established. This situation may represent a technological 'lock-in' or 
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'trap' or 'pesticide treadmill,'2 which reflects a status where producers are increasingly constrained to 

use pesticides and cannot escape this technology. Cowan and Gunby (1996) framed this observation 

as ‘Sprayed to Death: Path Dependence, Lock-in and Pest Control Strategies.’ Such lock-in may 

contradict the general (microeconomic) thinking that market pressures always lead to adopting the 

most efficient solution, and decisions are reversible if superior alternative solutions are available. The 

concept of path dependence contrasts with this view, and it describes self-reinforcing mechanisms. It 

is generally used to explain the adoption of competing technologies that become dominant and 

suboptimal by excluding superior alternatives3.  

In the literature, the concept of path dependence is the dominant explanation of pesticide use 

persistency (Cowan and Gunby, 1996). Most of this literature reviews and documents cases in light of 

theoretical constructs around path dependence4. Earlier studies linked this path-dependence to 

inefficiency. Arthur (1994), for example, shows that one of the properties of a path-dependent process 

is inefficiency which arises from the inflexibility of adopting better alternatives when they exist or 

occur. As a result and relating to our case study, such inefficiency will result in a systematic overuse of 

pesticides compared to the most effective and or efficient level of pesticides use. Pesticides 

                                                           
2 ‘Pesticide treadmill’ is characterized by overuse and decreased effectiveness of pesticide due to weakened 

biological control and appearance of resistance. See Bosch (1978), Brunner (2014), Hedlund et al. (2020), 

Lichtenberg (2013), Weddle et al. (2009) for more discussion on the pesticide treadmill. 

3 Other papers have looked at the socioeconomic, market, and regulatory (institutions) mechanisms explaining 

pesticide dependence (Clapp, 2021, Hu, 2020, Wilson and Tisdell, 2001). 

4 These constructs borrow new definitions of path dependence from organizational science and expands over 

the three phases associated with the concept: preformation phase (origin, triggering events), formation phase 

(self-reinforcing mechanisms), and path dependence - ‘lock-in’ - (Page, 2006, Sydow et al., 2009, Vergne and 

Durand, 2010). 
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inefficiency was found to be relevant in previous literature. For instance, using Dutch arable farms data 

between 1989 and 1992, Oude Lansink and Silva (2004) have estimated a high amount of pesticides 

inefficiency (more than 30%). Using a similar type of data, between 2002 and 2007, Skevas et al. (2012) 

and Skevas et al. (2014) found an average technical inefficiency of pesticides around 7%. All the 

previous studies have measured pesticides inefficiency; however, no structural inefficiency has been 

considered.  

We here contribute to this literature by providing a quantitative analysis of the role of pesticides 

through the lenses of inefficiency. We mainly introduce the notion of the structural inefficiency of 

pesticides. More specifically, we quantify two types of inefficiencies characterizing pesticide use at the 

farm level: transient and persistent (Kumbhakar et al., 2014). The transient inefficiency is the most 

flexible component and can change from one period to another. At the same time, the persistent part 

expresses the rigidity in inefficiency or a long-term suboptimal technology due to all the mechanisms 

maintaining in the state of path dependency. In addition, the share of the persistent part in the overall 

inefficiency may shed some light on the degree of 'entrapment' of producers in pesticide use. 

Practically, our idea is operationalized by representing the production technology considering a 

stochastic input requirement frontier model following Guan et al. (2009). In this new representation, 

pesticide use is expressed as a function of all other inputs and outputs. We adopt a two-step method 

due to the endogeneity accrued to this representation. In the first step, consistent estimates are 

obtained using the generalized method of moments (GMM). In the second step, the residuals from the 

first step are used to disentangle the inefficiency components using maximum simulated likelihood 

following Filippini and Greene (2016) and Badunenko and Kumbhakar (2016). This is our paper's main 

contribution, which provides a quantification of the degree of pesticides lock-in. We illustrate our 

model with a sample of 601 observations from Swiss intensive wheat producers observed over ten 

years between 2009 and 2018. The sample of Swiss wheat producers is very interesting to exemplify 

on pesticides dependency as the sector since the beginning of the nineties has undergone big transition 

into more sustainable production. Two major trends characterized wheat production in Switzerland: 
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the farms part of the Extenso program which are not allowed to use any type of pesticides except 

herbicides (Finger and El Benni, 2013, Möhring and Finger, 2022), and the ‘conventional’ producers. 

As dependency is not expected to be present in the case of Extenso farms, we have therefore 

conducted our analysis on the group of intensive wheat farms. 

Our results show that evidence of persistent inefficiency is found depending on the pesticide 

indicators, and in these cases, it is even the higher component of the total inefficiency.  

The rest of the article is structured as follows. The following section presents the methodological 

framework and the two-step model. It is then followed by an application to the case of Swiss winter 

wheat producers over the period 2009 to 2019. The final section provides a summary of the main 

findings. 

Methodological and econometric framework  

We here present a framework on how pesticide is used in crop production processes and the involved 

inefficiencies. Based on this framework, we develop an econometric framework providing the basis for 

our empirical analysis. A particular interest of our analysis is to estimate inefficiency and disentangle 

this into structural and transient inefficiencies. In the case of pesticides, we also argue that structural 

inefficiency can also be reflected by persistent inefficiency, which is a long-term sub-optimal situation. 

We show how the persistent inefficiency can be assessed in the next sub-section methodologically. 

The Stochastic Input Requirement Frontier 

The production possibility frontier (PPF) can be written as 

 𝐻(𝑌𝑖𝑡 , 𝑍𝑖𝑡 , 𝐗𝐢𝐭) = 0 (1)  . 

where 𝑌 is the output, 𝑍 represents pesticide used, and 𝐗 the vector of all other inputs. Finally, 

subscripts 𝑖 = 1,… ,𝑁; 𝑡 = 1,… , 𝑇𝑖 stand for firm (farm) and time. Following Kumbhakar and 

Hjalmarsson (1998), if (1) satisfies the regularity conditions in Diewert (1974), the production 
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technology can be summarized by the pesticides requirement function showing the level of pesticides 

needed to produce a specific level of output, which can be expressed as 

  𝑍𝑖𝑡 = 𝐹(𝑌𝑖𝑡 , 𝐗𝐢𝐭)𝑒
𝑣𝑖𝑡 (2)  . 

where 𝑣 is the random error term, which accounts for factors not in the control of any farm. Next, 

inefficiency is then incorporated in model (2) as an additional error component. The new model is 

represented as 

  𝑍𝑖𝑡 = 𝐹(𝑌𝑖𝑡 , 𝐗𝐢𝐭)𝑒
𝑣𝑖𝑡+𝑢𝑖𝑡  (3)  . 

Where 𝑢𝑖𝑡 > 0 indicates excess in the use of pesticides while 𝑢𝑖𝑡 = 0 means that the farm is operating 

on the frontier. The minimum amount of pesticides given output 𝑌 and all the other inputs 𝐗 is 

obtained as 

  𝑍𝑖𝑡
∗ = 𝑍𝑖𝑡𝑒

−𝑢𝑖𝑡 = 𝐹(𝑌𝑖𝑡 , 𝐗𝐢𝐭)𝑒
𝑣𝑖𝑡  (4)  . 

𝑒−𝑢𝑖𝑡  can be interpreted as Farrell (1957) 's technical efficiency 

While representation (3) with two error components has been the cornerstone in the stochastic 

frontier literature (Kumbhakar and Lovell, 2000), many structural, societal, political problems can 

systematically create excess pesticides use. We split the inefficiency component into two parts, one 

persistent and the other transient. The transient inefficiency part still captures issues that can be 

solved in the short run, e.g., poor management decisions with short-term impact. Moreover, the model 

is also augmented with a fourth component which captures the farm's latent heterogeneity such as 

soil quality, climatic conditions, farmers’ preferences, or imperfect functioning of credit markets 

(Colombi et al., 2011). The new model writes as follows 

  𝑍𝑖𝑡 = 𝐹(𝑌𝑖𝑡 , 𝐗𝐢𝐭)𝑒
𝑎𝑖+𝑏𝑖𝑡+𝑐𝑖+𝑤𝑖𝑡  (5)  . 



 

8 
 

𝑢𝑖𝑡 = 𝑐𝑖 +𝑤𝑖𝑡 is the overall pesticides inefficiency with 𝑐𝑖 be the persistent part and 𝑤𝑖𝑡 the transient 

part, and 𝑣𝑖𝑡 = 𝑎𝑖 + 𝑏𝑖𝑡, where 𝑎𝑖  is the farm unobserved effects and 𝑏𝑖𝑡 is the random noise. 

Econometric framework and implementation  

Four-component model estimation 

Using the logarithmic transformation and a Cobb-Douglas function, model (5) becomes 

  𝑧𝑖𝑡 = 𝜆𝑦𝑖𝑡 +  𝛃′𝐱𝐢𝐭 + 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖 + 𝑤𝑖𝑡  (6)  . 

Where 𝑧𝑖𝑡 = ln 𝑍𝑖𝑡, 𝑦𝑖𝑡 = ln𝑌𝑖𝑡 , 𝐱𝐢𝐭 = ln𝐗𝐢𝐭,  and 𝛃 is a parameter vector. Model (6) is a typical four-

component stochastic frontier model which has been discussed in Colombi et al. (2014), Kumbhakar 

et al. (2014), Tsionas and Kumbhakar (2014). From model 6, we can obtain the composed error term 

as 𝜖𝑖𝑡 = 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖 +𝑤𝑖𝑡. These error terms are assumed to be distributed independently and 

identically and independently from each other. In particular, we have 𝑎𝑖 = 𝜎𝑎𝐴𝑖 and 𝑏𝑖𝑡 = 𝜎𝑏𝐵𝑖𝑡, and 

𝑐𝑖 = 𝜎𝑐|𝐶𝑖|, 𝑤𝑖𝑡 = 𝜎𝑤|𝑊𝑖𝑡| with 𝐶𝑖 ∼ 𝒩(0,1), 𝑊𝑖𝑡 ∼ 𝒩(0,1), 𝐴𝑖 ∼ 𝒩(0,1), and 𝐵𝑖𝑡 ∼ 𝒩(0,1) 

respectively. A tractable full information likelihood is obtained in Colombi et al. (2014), who used the 

properties of the Closed-Skewed Normal distribution. However, this likelihood is very hard to estimate 

because of the multivariate integrals involved.5 Therefore, in this article, we follow Filippini and Greene 

(2016) and use maximum simulated likelihood, which is easier to estimate.  

Let′𝑠 re-write model (6) as follows: 

  𝑧𝑖𝑡 = 𝜆𝑦𝑖𝑡 + 𝛃
′𝐱𝐢𝐭 + 𝜃𝑖 + 𝑏𝑖𝑡 + 𝑤𝑖𝑡 (7)  . 

                                                           
5 See Appendix A. 
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where 𝜃𝑖 = 𝜎𝑎𝐴𝑖 + 𝜎𝑐|𝐶𝑖|. Conditioned on 𝜃𝑖, the 𝑇𝑖 observations for farm 𝑖 are independent. The 

conditional density is obtained from the derivation of the convolution of the normal and half-normal 

distributions. We have 

 𝑓(𝜇𝑖1, … , 𝜇𝑖𝑇𝑖|𝜃𝑖) =∏
2

√𝜎𝑏
2 + 𝜎𝑤

2
𝜙 (

𝜇𝑖𝑡

√𝜎𝑏
2 + 𝜎𝑤

2
)Φ(

𝜇𝑖𝑡
𝜎𝑤
𝜎𝑏

√𝜎𝑏
2 + 𝜎𝑤

2
)

𝑇𝑖

𝑡=1

 (8)  . 

Where 𝜇𝑖𝑡 = 𝑧𝑖𝑡 − 𝜆𝑦𝑖𝑡 − 𝛃
′𝐱𝐢𝐭 − 𝜃𝑖. 𝜙 is the standard normal density, and Φ is the standard normal 

cdf. The unconditional log-likelihood for the model is obtained by integrating the unobserved random 

variable, 𝜃𝑖 out of the previous conditional density. Thus, 

 𝑓(𝜇𝑖1, … , 𝜇𝑖𝑇𝑖) = ∫ ∏
2

√𝜎𝑏
2 + 𝜎𝑤

2
𝜙 (

𝜇𝑖𝑡

√𝜎𝑏
2 + 𝜎𝑤

2
)Φ(

𝜇𝑖𝑡
𝜎𝑤
𝜎𝑏

√𝜎𝑏
2 + 𝜎𝑤

2
)

𝑇𝑖

𝑡=1

𝑝(𝜃𝑖)𝑑𝜃𝑖

∞

𝜃𝑖

 (9)  . 

Where  

 𝑝(𝜃𝑖) =
2

√𝜎𝑎
2 + 𝜎𝑐

2
𝜙 (
𝜎𝑎𝐴𝑖 + 𝜎𝑐|𝐶𝑖|

√𝜎𝑎
2 + 𝜎𝑐

2
)Φ(

(𝜎𝑎𝐴𝑖 + 𝜎𝑐|𝐶𝑖|)
𝜎𝑐
𝜎𝑎

√𝜎𝑎
2 + 𝜎𝑐

2
) (10)  . 

Then  

 log 𝐿(𝜆, 𝛃, 𝜎𝑎 , 𝜎𝑏 , 𝜎𝑐 , 𝜎𝑤) =∑log 𝑓(𝜇𝑖1, … , 𝜇𝑖𝑇𝑖)

𝑁

𝑖=1

 (11)  . 

The integral in (9) has no closed-form, but simulation can evaluate it. The simulated log-likelihood is 

 

log 𝐿(𝜆, 𝛃, 𝜎𝑎 , 𝜎𝑏 , 𝜎𝑐, 𝜎𝑤)

= ∑log
1

𝑅
∑∏

2

√𝜎𝑏
2 + 𝜎𝑤

2
𝜙 (

𝜇𝑖𝑡𝑟

√𝜎𝑏
2 + 𝜎𝑤

2
)Φ(

𝜇𝑖𝑡𝑟
𝜎𝑤
𝜎𝑏

√𝜎𝑏
2 + 𝜎𝑤

2
)

𝑇𝑖

𝑡=1

𝑅

𝑟=1

𝑁

𝑖=1

 
(12)  . 

where 𝜇𝑖𝑡𝑟 = 𝑧𝑖𝑡 − 𝜆𝑦𝑖𝑡 − 𝛃
′𝐱𝐢𝐭 − 𝜎𝑎𝐴𝑖𝑟 − 𝜎𝑐|𝐶𝑖𝑟| 

The simulation requires pairs of random draws (𝐴𝑖𝑟 & 𝐶𝑖𝑟) from two standard normal distributions. 

For efficient computation, the Halton sequence of draws is considered. The conditional efficiencies still 
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use some results from Colombi et al. (2014) and are based on the moment generating function for the 

closed-skewed normal distribution.6 Moreover, following Kumbhakar et al. (2014), a total efficiency 

measure can be obtained as 

 
total efficiencyit = 𝐸[exp(−𝑐𝑖)|𝜖𝑖𝑡] × 𝐸[exp(−𝑤𝑖𝑡)|𝜖𝑖𝑡] 

(13)  . 

where 𝐸[exp(−𝑐𝑖)|𝜖𝑖𝑡] represents the persistent conditional efficiency while 𝐸[exp(−𝑤𝑖𝑡)|𝜖𝑖𝑡] is the 

conditional transient efficiency. 

The estimation of the model (6) may be flawed because of the endogeneity of the output and some of 

the inputs. This endogeneity can come from multiple sources: i- correlation between (𝑦, 𝑥) and the 

unobserved heterogeneity 𝑎, ii-) correlation between (𝑦, 𝑥) and the persistent inefficiency 𝑐,7 iii-) 

correlation between (𝑦, 𝑥) and the random noise 𝑏, -iv) correlation between (𝑦, 𝑥) and the transient 

inefficiency 𝑤, or v-) any combination of the previous correlations.  

Two-step procedure for endogeneity correction 

To deal with the endogeneity, we consider a two-step approach procedure. In the first step, a 

transformation is used to eliminate the time-invariant components (𝑎𝑖 + 𝑐𝑖). Practically, since our 

panel data contains some gaps, and following Arellano and Bover (1995), we retained the forward-

orthogonal deviations. We opted for this approach instead of the first-difference transformation, as 

the latter magnifies gaps in the unbalanced panel, while the forward-orthogonal deviations preserve 

the sample size. Applied to a variable, the forward-orthogonal deviations subtract from the current 

                                                           
6 See Appendix B. 

7 Mundlak (1961), Mundlak and Hoch (1965) argued that omitting the unobserved time-invariant management 

(either farm effect or persistent inefficiency) creates endogeneity bias because it is likely to be correlated with 

the inputs. 
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value, the average of all future available observations. Forward-orthogonal deviations are always 

computable for all observations except the last for each cross-section. The transformed model is 

 Δ̃𝑡  𝑧𝑖𝑡 = 𝜆Δ̃𝑡𝑦𝑖𝑡 + 𝛃
′�̃�𝐭𝐱𝐢𝐭 + Δ̃𝑡𝜖𝑖𝑡 (14)  . 

where Δ̃𝑡𝜖𝑖𝑡 = Δ̃𝑡𝑏𝑖𝑡 + Δ̃𝑡𝑤𝑖𝑡. 

The forward-orthogonal deviations transformation matrix is8 

 

𝐇𝐢 = diag(√
𝑇𝑖

𝑇𝑖 − 1
,√
𝑇𝑖 − 1

𝑇𝑖 − 2
,… ,√

2

1
)

×

(

 
 
 
 
 

𝑇𝑖 − 1

𝑇𝑖
−
1

𝑇𝑖
−
1

𝑇𝑖

0
𝑇𝑖 − 2

𝑇𝑖 − 1
−

1

𝑇𝑖 − 1

⋯

−
1

𝑇𝑖
−
1

𝑇𝑖

−
1

𝑇𝑖 − 1
−

1

𝑇𝑖 − 1
⋮ ⋱ ⋮

0 0 0 ⋯
1

2
−
1

2 )

 
 
 
 
 

 

(15)  . 

After eliminating the time-invariant component, we consistently estimate the parameters (𝜆, 𝛃) in the 

frontier function using the GMM approach. We consider the following moment conditions: 

 In the case of a strictly exogenous variable 𝑘, we have 

𝐸[𝑘𝑖,𝑡−𝑠Δ̃𝑡𝜖𝑖𝑡] = 0         𝑡 − 𝑠 = 0, 1,… , 𝑇 ; 𝑡 = 𝑠,… , 𝑇 − 1 

 When the variable 𝑘 is predetermined or weakly exogenous, we have: 

𝐸[𝑘𝑖,𝑡−𝑠Δ̃𝑡𝜖𝑖𝑡] = 0        𝑠 = 0, 1, … , 𝑡 ; 𝑡 = 𝑠,… , 𝑇 − 1 

 Finally, in the case 𝑘 is an endogenous variable, we have 

𝐸[𝑘𝑖,𝑡−𝑠Δ̃𝑡𝜖𝑖𝑡] = 0         𝑠 =  1,… , 𝑇 ; 𝑡 = 𝑠,… , 𝑇 − 1 

                                                           
8 The first part of the matrix is a scaling that ensures that the variance remains unchanged if 𝜖𝑖𝑡 is homoskedastic  
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When all the instruments are stacked together9, we obtain: 

 
𝐸[𝐊𝐢′𝐇𝐢𝛜𝐢] = 𝐸[𝐦𝐢(𝚯)] = 0  

(16)  . 

where 𝚯 = (𝜆, 𝛃)′ 

The GMM estimator minimizes a quadratic form 

 �̂� = argmin
𝚯
(
1

𝑁
∑𝐌𝐢′𝐇𝐢𝛜𝐢
𝑖

)

′

𝐖(
1

𝑁
∑𝐌𝐢′𝐇𝐢𝛜𝐢
𝑖

)  (17)  . 

where 𝑁 is the sample size, and 𝐖 is a weighting matrix. An optimal weighting matrix is given by 

𝐖(�̃�) = (
1

𝑁
∑𝐦𝐢(�̃�)𝐦𝐢(�̃�)′

𝑖

)

−𝟏

 

where �̃� is obtained from an initial GMM with a different weighting matrix (Arellano and Bond, 1991). 

Our model includes time effects through year dummies to account for global shocks. Without loss of 

generality, the year dummies are strictly exogenous, and the following level moment conditions can 

be used:  

 
𝐸[𝐃𝐢′𝛜𝐢] = 0 

(18)  . 

where 𝛜𝐢 = 𝐳𝐢 − 𝜆𝐲𝐢 − 𝛃
′𝐱𝐢 − 𝛅

′𝐃𝐢 and 𝐃𝐢 a matrix of year dummies. (18) and (20) imply two sets of 

moment conditions, one with a transformed error term and the other with a level error term. These 

                                                           
9 Building upon Arellano and Bover (1995), we use lagged explanatory variables as instruments. As Wang and 

Bellemare (2019 p 2) underline, this is a valid approach9 when “lagged explanatory variables have no direct causal 

effect on the dependent variable or on the unobserved confounders.” Moreover, in our case, lag of exogenous 

non-explanatory variables is also used. 
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two sets of moments conditions particularly relate to the system GMM approach discussed in Blundell 

and Bond (1998). The new stacked moment condition is 

 
𝐸[𝐦𝐢(𝚯)] = 𝐸 [

𝐊𝐢′�̃�𝐭𝛜𝐢
𝐃𝐢′𝛜𝐢

] = 0 
(19)  . 

where �̃�𝐭𝛜𝐢 = �̃�𝐭 𝐳𝐢 − 𝜆�̃�𝐭𝐲𝐢 − 𝛃
′�̃�𝐭𝐱𝐢 and 𝚯 now also includes the parameter 𝛿𝑡. 

An alternative formulation of the moment of conditions allows a simultaneous estimation using a level 

GMM (Arellano and Bover, 1995): 

 
𝐸 [
𝐊𝐢′�̃�𝐭𝛜𝐢
𝐃𝐢′𝛜𝐢

] = 𝐸 [
𝐊𝐢
′𝐇𝐢𝛜𝐢
𝐃𝐢′𝛜𝐢

] = 𝐸 [(
𝐊𝐢
′𝐇𝐢
𝐃𝐢′

) 𝛜𝐢] = 0 
(20)  . 

For the estimation, we have retained an initial weighting matrix that is identical to a 2SLS (Windmeijer, 

2000): 

 
𝐖𝟏 = (

1

𝑁
∑(

𝐊𝐢
′𝐇𝐢𝐇𝐢

′𝐊𝐢 𝐊𝐢
′𝐇𝐢𝐃𝐢

𝐃𝐢
′𝐇𝐢

′𝐊𝐢 𝐃𝐢
′𝐃𝐢

)

𝑖

)

−1

 
(21)  . 

The standard errors obtained with the GMM estimates tend to be severely downward biased. 

Windmeijer (2005) suggested a finite-sample correction which is applied in this paper.10 Finally, the 

orthogonality of the instruments to the error terms is evaluated using Sargan's overidentification test. 

Given the consistent estimates of (�̂�, �̂�, 𝛿)′, in a second step the remaining parameters are estimated 

using the maximum simulated likelihood (MSL) as described in the previous subsection. In particular, 

the MSL is applied to the equation 

 
𝜖�̂�𝑡 = 𝜶′𝐐𝑖 + 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖 + 𝑤𝑖𝑡  

(22)  . 

                                                           

10 The corrected standard errors are still biased but less severely. 
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where 𝜖�̂�𝑡 are the residuals from the first step and 𝐐𝐢 a vector of time-invariant variables. Estimation 

of (22) will help to disentangle the persistent and the transient inefficiency, and the contribution of 

each type of inefficiency in the overall inefficiency can be estimated.  

Data on Swiss winter wheat producers 

This section illustrates the case study used from Swiss wheat production. We base our analysis on a 

sample of wheat producers observed over ten years between 2009 and 2018. The dataset used for this 

analysis is provided by the Swiss center of excellence for agricultural research (Agroscope) under the 

project "Central Evaluation of Agri-Environmental Indicators" (CE-AEI) (de Baan et al., 2020). The Swiss 

wheat production has the particularity of being categorized into two major groups: Intensive vs. 

Extenso. The latter group concerns farmers where pesticide use is limited to herbicides and seed 

treatments. In other words, fungicides, insecticides, plant growth regulators, and chemical-synthetic 

stimulators of natural resistance are not allowed (Finger and El Benni, 2013). Moreover, farmers 

enrolled in the Extenso program have to face additional constraints in terms of sustainability and 

compulsory crop rotation (Möhring and Finger, 2022). For this reason, our analysis only focuses on 

intensive farms as they are more susceptible to show some structural inefficiency in pesticide use. 

Swiss wheat producers' data 

The data enables us to provide detailed information on input use and crop management. For example, 

we can identify if and how (e.g., with which technology) specific management practices such as tillage, 

seeding, mechanical weed management, fertilization, and pesticide application, were done. We 

transform this information in comparable units, i.e., to transform machinery use and labor force into 
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Swiss Francs11. Descriptive statistics of all the variables considered for this analysis are presented in 

Table 1.12 The output variable is the total wheat production measured in tons. Five inputs variables are 

shown in Table 1. Nitrogen use in kilograms, labor and machinery costs deflated to December 2015 

Swiss Francs (CHF), mechanical weeding costs (also deflated CHF), wheat surface, and finally pesticides 

use. We use three indicators to express pesticide use. First, the quantity of active ingredients in kg (AI). 

Second, we use the treatment frequency index (TFI) that measures pesticides intensity relatively to 

standard dose rates of active ingredients. Third, we aim to account also for pesticide risks for the 

environment and human health that differ per type of pesticides and are not necessarily related to 

quantities (e.g., Möhring et al. (2019)). More specially, we use the pesticide load index (LI) used to 

quantify potential risks of pesticide use over three indicators: human health, ecotoxicology, and 

environmental fate (Möhring et al., 2021) to transform individual pesticide applications into a Load 

Indicator each year.  

                                                           
11 More specifically, we use Swiss machinery costs data and detailed assumptions on labor requirements for 

specific crop management practices (e.g. Gazzarin and Lips (2013), Heitkämper et al. (2019)) The code used in 

this transformation can be found here https://github.com/AECP-ETHZ/ZA-AUI.  

12 See Appendix C for descriptive statistics of Extenso farms. 
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Table 1: Summary Statistics of intensive wheat production in Swiss farms between 2009-2018 

Main Model variables 

Variables Mean St. Dev. 

Wheat production (dt) 𝑌 398.2 309.2 

Pesticides Load index (LI) 𝑍 12.3 18.5 

Active Ingredients (AI) 𝑍 9.8 11.2 

Treatment Frequency Index (TFI) 𝑍 2.6 1.5 

Nitrogen use (kilograms) 𝑋1 931.7 793.0 

Labor and machinery costs (constant CHF) 𝑋2 7,200 5,477 

Mechanical weeding (constant CHF) 𝑋3 1,576 1,642 

Wheat surface (hectares) 𝑋4 6.2 4.6 

Wheat price per dt (CHF) 45.9 6.3 

Pesticides price (CHF/active ingredient) 4,231 34,038 

Other additional variables 

Wheat yield (tons/hectare)  6.3 - 

Pesticides Load index per hectare 1.89 - 

Active Ingredients per hectare 1.55 - 

Nitrogen use (kilograms/hectare) 146 - 

Labor and machinery costs per hectare 1162 - 

Mechanical weeding per hectare 282 - 

Wheat revenues (constant CHF/hectare) 2841 - 

Number of observations 601 - 

Source: CE-AEI and authors' computations. 
Note: Monetary values are expressed in December 2015 Swiss Francs (CHF) 

In comparison to Extenso farms, additional variables in Table 1 and Appendix C show that Intensive 

farms have a higher yield. Despite the higher wheat price premium for Extenso farms, the lower yield 

is also reflected in the lower wheat revenues per hectare. As expected, Extenso farms use less chemical 

input per hectare (lower load index and active ingredients) and a lower treatment frequency index 

than Intensive farms. Since 1993, the Swiss government has subsidized low-input farming under the 
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Extenso program. The prerogative of this program is the implementation of an integrated pest 

management system where mainly insecticides and fungicides are banned. In exchange, farmers 

receive additional subsidies to compensate for yield losses. This compensation amounts to 400 

CHF/hectare13, which, when included in the revenue per hectare of Extenso farms, raises to an average 

of 3,048 constant CHF per hectare, about 7% higher than Intensive farms revenue per hectare. As 

herbicides are forbidden for Extenso farms, the figures in Appendix C show that these farms resort 

more to mechanical weeding than Intensive farms. Regarding other inputs, the fertilizers used per 

hectare are almost equivalent between both groups of farms. In contrast, labor and machinery 

expenses per hectare are higher in the group of Intensive farms. 

Model estimation and results 

The input requirement function in (5) is estimated using a Cobb-Douglas specification. The log-

linearization of the function is possible for all the variables except mechanical weeding, for which zero 

values are present. For this variable, we use the inverse hyperbolic sine transformation (�̃� =

ln(𝑥 + √𝑥2 + 1) (Bellemare and Wichman, 2020). One caveat of the inverse hyperbolic sine 

transformation is the dependence on units of measurement. To minimize this issue, we follow the 

iterative process suggested by Aihounton and Henningsen (2021) to find the appropriate magnitude 

of the data. In our case, mechanical weeding is transformed into thousands of CHF. 

For the GMM estimation, we are concerned about the endogeneity of the output (𝑌) and mechanical 

weeding (𝑋3). We suspect that the level of pesticides and output is decided simultaneously, in addition 

to mechanical weeding, which is a substitute for herbicides. All the other inputs (nitrogen, labor, 

                                                           
13 https://www.fedlex.admin.ch/eli/cc/2013/765/fr#annex_7/lvl_d4e347/lvl_5/lvl_d4e367 
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machinery expenses, and planted area) are treated as weakly exogenous (predetermined).14 We have 

also considered two external and strictly exogenous variables: wheat and pesticide prices. Moreover, 

to avoid instruments proliferation, we have restricted the lag length to three based on the average 

time of presence of each farm and the lead to two in the case of exogenous variables. Finally, we 

collapse all the instruments (Roodman, 2009). 

The (two-step) GMM estimates are provided in Table 2 for the three different measures of pesticides.15 

The Sargan overidentification test indicates that the orthogonality conditions are satisfied in all the 

three models presented with p-values higher than 0.21. When load index (LI) and active ingredients 

(AI) are the dependent variables, no variables appear to be significant. However, in the case of the 

treatment frequency index (TFI), wheat production has a significant positive effect while the 

production area has a significant negative impact. These results are intuitive as for these types of 

farms, higher production is associated with increased use of pesticides. Moreover, intensifying also 

allows these farms to use pesticides to increase their yield and, therefore, require less area for 

producing the same amount. It is worth noting that many variables lose their significativity when the 

farms' effects are included in the model. 

We have also estimated the GMM model for the Extenso farms and the pooled sample for comparison 

purposes. Results can be found in Appendix E. In the case of Extenso farms, we found a significant and 

negative effect of mechanical weeding in the cases where load index (LI) and active ingredients (AI) 

are the dependent variables. This again stresses the importance of mechanical weeding in Extenso 

                                                           
14 We consider nitrogen, labor and machinery expenses, area planted as predetermined in our estimation as we 

assume that these variables in period 𝑡 are uncorrelated with the error term in period 𝑡 but correlated with past 

error terms. This implies that we assume that many unobserved factors that explain past pesticides use decisions 

affect the current level of these variables. 

15 See Appendix D for the full table of results. 



 

19 
 

farms. In the case of the treatment frequency index (TFI) no variables appear to be significant. We 

recommend taking these results with caution as the Extenso program is voluntary, which might be the 

source of selection bias ignored in the results presented in Appendix E. In the case of the pooled 

sample, for all pesticide indicators, the labor and machinery costs (both excluding mechanical weed 

control) are positively and significatively related to pesticide use. This implies that the two input 

variables are complements rather than substitutes. A potential reason for this complementarity is that 

pesticide applications also require machinery and labor inputs. In contrast, we find mechanical 

weeding to be a substitute for pesticides in the case of LI and AI as pesticide indicators (like in Extenso 

farms). When TFI is considered, mechanical weeding is non-significant.  

The MSL results of the second stage estimation are presented in Table 3.16 For some of the estimates, 

the algorithm fails to derive elements of the inverse Hessian matrix regarding the persistent 

inefficiency component 𝜎𝑐
2, suggesting a model without this component. The results in Table 4 point 

to persistent pesticide inefficiency when load index and active ingredients are the pesticide indicators. 

In the case of the treatment frequency index, we found no evidence of persistent inefficiency. 

Moreover, persistent efficiency is even lower than transient efficiency whenever it exists. For the 

Intensive farms, it seems that the pesticide indicator used might point to different conclusions in terms 

of inefficiencies. As previously, we have also estimated the model for the Extenso and the pooled 

sample (Appendix F). As hypothesized, we found no persistent pesticide inefficiency in the case of 

Extenso farms in all cases. In the case of the pooled sample, of the three pesticide indicators, only the 

load and the treatment frequency indices reveal the presence of persistent inefficiency. 

Table 5 presents the share of pesticides persistent inefficiency in the total inefficiency. This share is 

computed by taking the logarithmic transformation of formula (13). The results in this Table reveal 

that when it exists, the persistent part of the inefficiency is the significant component of the overall 

                                                           
16 Results for Extenso farms and the pooled sample can be found in Appendix F. 
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performance, and it is on average about 84% of the pesticide's total inefficiency. The distributions of 

the shares are very similar in all cases. As argued in the introduction section, this share can reflect the 

degree of entrapment of producers regarding pesticides use. It appears here to be very high. 
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Table 2: GMM Estimation Results of the First-Step Model  

Variables LI AI TFI 

Wheat Production (𝑌) 2.06 4.28 1.68* 

  (1.95) (3.31) (0.85) 

Nitrogen (𝑥1) 0.27 0.38 0.08 

  (0.42) (0.44) (0.18) 

Labor and machinery costs (𝑥2) 0.43 0.60 0.89 

  (1.12) (1.47) (0.62) 

Mechanical weeding costs (𝑥3) -0.77 -0.50 -0.22 

  (0.50) (0.54) (0.36) 

Production surface (𝑥4) -1.75 -4.20 -2.49*** 

  (1.86) (2.97) (0.80) 

Year Effects yes yes yes 

Farms Effects yes yes yes 

Number of instruments 40 40 40 

Sargan Statistic 30.44 29.87 30.45 

Sargan test p-value 0.21 0.23 0.21 

***p < 0.001; **p < 0.01; *p < 0.05   

Note: lower-case letters 𝑦, 𝑥1, 𝑥2, 𝑥4 represents logarithms of 𝑌, 𝑋1, 𝑋2, 𝑋4 respectively and 𝑥3 is the IHS 

transformation of 𝑋3. Parameters standard errors are in brackets. 

 



 

22 
 

Table 3: Persistent and Transient Efficiency Model (Second-Step) 

 LI  AI  TFI  

(Intercept) -0.08 -0.49 -0.02 

  (0.28) (0.29) (0.11) 

Kantonal dummies Yes Yes Yes  

ln 𝜆 = ln
𝜎𝑤
𝜎𝑏

 -5.37 -4.62 -3.93 

 (15.13) (6.96) (3.59) 

ln 𝜎 = ln√𝜎𝑤
2 + 𝜎𝑏

2 0.30*** 0.32*** -0.57*** 

  (0.02) (0.02) (0.03) 

ln 𝜎𝑎
2 -0.52*** -0.87* -1.38*** 

  (0.13) (0.39) (0.21) 

ln 𝜎𝑐
2 -1.33* -0.35° -30.62 

  (0.52) (0.19)  NA 

Mean Persistent Efficiency 0.71 0.60 1.00 

Mean Transient Efficiency 0.94 0.91 0.92 

Mean Total Efficiency 0.67 0.54 0.92 

***p < 0.001; **p < 0.01; *p < 0.05 ; °p < 0.1   

Note: Parameters standard errors are in brackets.  
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Table 4: Share of Persistent Inefficiency distribution in Total Inefficiency 

 LI AI 

Min 0.74 0.72 

1st Quartile 0.83 0.82 

Median 0.85 0.85 

Mean 0.84 0.84 

3rd Quartile 0.86 0.87 

Max 0.90 0.95 

Conclusion 

In this paper, we explore the matter of pesticides trap in the case of Swiss winter wheat producers. 

Our analysis is grounded on the assumption that self-reinforcing mechanisms that are the main 

features of a trap or path dependency place farms in a sub-optimal state characterized by persistent 

inefficiency in pesticide use. We first estimate an input requirement technology to disentangle 

persistent inefficiency from transitory inefficiency in pesticide use. After correcting for potential 

endogeneity issues, persistent and transient inefficiency are estimated using maximum simulated 

likelihood. The results of intensive Swiss winter wheat producers reveal mixed results depending on 

the pesticide indicators used. When load index and active ingredients are considered, we found a very 

high level of persistent inefficiency, representing more than 84% of the total pesticide inefficiency. In 

the case of the treatment frequency index, there was no evidence of persistent inefficiency. Overall, 

these results point out the different implications of different pesticides indicators, as already 

underlined in Möhring et al. (2019) 

From a policy perspective, our results raise the question of path dependency for intensive wheat 

producers. Looking at the parallel in the "poverty trap" literature, an exogenous chock (e.g., in terms 

of stringent or not voluntary policy regulation) may be necessary to break this pesticide dependence. 
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In addition, it seems that the Extenso program may provide effective incentives in overcoming self-

reinforcing mechanisms that may lead to path dependency. Thereby, our results encourage 

strengthening the Extenso program. 

Future research can examine three things. First, assess the influence of pesticides lock-in features, as 

described in the literature, in explaining the levels of inefficiency. Second, our analysis covers only a 

specific case study so that more evidence-based on other agricultural systems is needed. Finally, the 

question of which pesticide indicators to consider is also raised by this work as depending on the 

pesticide indicator, different conclusions can be formulated. One can imagine that a specific pesticide 

indicator may better fit a particular type of farm. 
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Appendices 

Appendix A: Log-likelihood using properties of the Closed-Skewed Normal distribution 

Let 𝛼𝑖 = 𝑎𝑖 + 𝑐𝑖  and 𝜂𝑖𝑡 = 𝑏𝑖𝑡 +𝑤𝑖𝑡. Each of these composed error follow a skew normal distribution 

which pdf is well defined (Aigner et al., 1977, Azzalini, 2013, Meeusen and Vandenbroeck, 1977). Thus 

the composed error 𝛼𝑖 + 𝜂𝑖𝑡 follows a Closed-Skewed Normal distribution by being the sum of two 

independent skew normal distributions. In compact form, model (6) can be written as 

  𝐳𝐢 = 𝜆𝐲𝐢 +  𝛃′𝐱𝐢 + 𝟏𝐓𝐢𝑎𝑖 + 𝐛𝐢 + 𝐆𝐮𝐢 (23)  . 

where 𝐮𝐢 = (𝑐𝑖, 𝑤𝑖1, … , 𝑤𝑖𝑇𝑖)′ and 𝐛𝐢 = (𝑏𝑖1, … , 𝑏𝑖𝑇𝑖)′ are vectors of length 𝑇𝑖 + 1 and 𝑇𝑖 respectively, 

𝐆 = [𝟏𝐓𝐢     𝐈𝐓𝐢] is a matrix of dimension 𝑇𝑖 × (𝑇𝑖 + 1), where 𝟏𝐓𝐢 is the unity column vector of length 

𝑇𝑖 and 𝐈𝐓𝐢 is the identity matrix of dimension 𝑇𝑖. 𝛜𝐢 = 𝟏𝐓𝐢𝑎𝑖 + 𝐛𝐢 + 𝐆𝐮𝐢 follows a Closed-Skewed 

Normal distribution, and the joint distribution (accounting) for the panel dimension is given by17  

 

log 𝐿𝑖(𝜆, 𝛃, 𝜎𝑎 , 𝜎𝑏 , 𝜎𝑐 , 𝜎𝑤)

= (𝑇𝑖 + 1) log 2

+ log𝛟𝑇𝑖(𝐳𝐢 − 𝜆𝐲𝐢 − 𝛃
′𝐱𝐢, 0, 𝚺𝐢 + 𝐆𝐕𝐢𝐆

′)

+ log �̅�𝑇𝑖+1
(𝐑𝐢(𝐳𝐢 − 𝜆𝐲𝐢 − 𝛃

′𝐱𝐢), 𝚲𝐢) 

(24)  A  

Where 𝚺𝐢 = 𝜎𝑏𝟏𝐓𝐢 + 𝜎𝑎𝟏𝐓𝐢𝟏𝐓𝐢′, 𝐕𝐢 = [
𝜎𝑐 𝟎𝑻𝒊

′

𝟎𝑻𝒊 𝜎𝑤𝟏𝐓𝐢
], 𝚲𝐢 = (𝐕𝐢

−𝟏 + 𝐀′𝚺𝐢
−𝟏 𝐆)

−𝟏
, 𝐑𝐢 = 𝚲𝐢𝐆

′𝚺𝐢
−𝟏, and 

𝛟𝑞(𝐬, 𝛍, 𝛀)  denotes the density at 𝐬 of a 𝑞-variate normal distribution with mean 𝛍 and variance 𝛀 

while �̅�𝑇𝑖+1(𝛍,𝛀) is the joint probability that a 𝑞-variate normal distribution with mean 𝛍 and 

variance 𝛀 belongs to the nonnegative orthant.  

  

                                                           
17 See Badunenko and Kumbhakar (2017), Badunenko and Kumbhakar (2016), Colombi et al. (2014). 
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Appendix B: Conditional efficiency using moment conditions of the Closed-Skewed Normal 

distribution 

We have: 

 𝐸[exp(𝐭′𝐮𝐢) |𝛜𝐢] =
�̅�𝑇𝑖+1

(𝐑𝐢𝛜𝐢 + 𝚲𝐢𝒕, 𝚲𝐢)

�̅�𝑇𝑖+1
(𝐑𝐢𝛜𝐢, 𝚲𝐢)

exp[𝐭′𝐑𝐢𝛜𝐢 +
1

2
𝐭′𝚲𝐭] (25)  . 

Where 𝛜𝐢 = 𝐳𝐢 − 𝜆𝐲𝐢 − 𝛃
′𝐱𝐢, and 

𝐮𝐢 = [

𝑎𝑖
𝑤𝑖1
⋮
𝑤𝑖𝑇𝑖

], 𝐭 = [

−1
0
⋮
0

] , [

0
−1
⋮
0

] ,⋯ , [

0
0
⋮
−1

] 

The conditional efficiencies estimation involves multivariate normal integration which is done using 

the GHK simulator. 
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Appendix C: Summary Statistics of Extenso and pooled sample between 2009-2018 

 Extenso farms All farms (Intensive + Extenso) 

Main Model variables 

Variables Mean St. Dev. Mean St. Dev. 

Wheat production (dt) 𝑌 261.4 216.9 338.8 281.2 

Pesticides Load index (LI) 𝑍 3.2 4.8 8.3 14.9 

Active Ingredients (AI) 𝑍 3.3 5.4 7.0 9.7 

Treatment Frequency Index (TFI) 
𝑍 

1.5 0.8 2.1 1.4 

Nitrogen use (kilograms) 𝑋1 648.9 589.7 808.9 725.3 

Labor and machinery costs 
(constant CHF) 𝑋2 

4,533 3,516 6,042 4,906 

Mechanical weeding (constant 
CHF) 𝑋3 

1,281 1,314 1,449 1,515 

Wheat surface (hectares) 𝑋4 4.5 3.7 5.5 4.3 

Wheat price per dt (CHF) 47.0 5.9 46.4 6.2 

Pesticides price (CHF/active 
ingredient) 

2,250 2,808 3,372 25,683 

Other additional variables 

Wheat yield (tons/hectare)  5.8 - - - 

Pesticides Load index per hectare 0.87 - - - 

Active Ingredients per hectare 0.80 - - - 

Nitrogen use (kilograms/hectare) 144 - - - 

Labor and machinery costs per 
hectare 

1038 
- - - 

Mechanical weeding per hectare 300 - - - 

Wheat revenues (constant 
CHF/hectare) 

2659 
- - - 

Number of observations 461 1,062 

Source: CE-AEI and authors' computations. 
Note: Monetary values are expressed in December 2015 Swiss Francs (CHF) 
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Appendix D: Full results of GMM for Intensive wheat producers 

Variables LI AI TFI 

Wheat Production (𝑌) 2.06 4.28 1.68* 

  (1.95) (3.31) (0.85) 

Nitrogen (𝑥1) 0.27 0.38 0.08 

  (0.42) (0.44) (0.18) 

Labor and machinery costs (𝑥2) 0.43 0.60 0.89 

  (1.12) (1.47) (0.62) 

Mechanical weeding costs (𝑥3) -0.77 -0.50 -0.22 

  (0.50) (0.54) (0.36) 

Production surface (𝑥4) -1.75 -4.20 -2.49*** 

  (1.86) (2.97) (0.80) 

Year_2009 -11.60 -23.25* -12.79*** 

  (8.80) (11.75) (4.11) 

Year_2010 -11.70 -23.27* -12.80*** 

  (8.83) (11.74) (4.08) 

Year_2011 -11.83 -23.23* -12.83*** 

  (8.83) (11.77) (4.07) 

Year_2012 -11.85 -23.26* -12.78*** 

  (8.84) (11.67) (4.08) 

Year_2013 -12.10 -23.37* -12.88*** 

  (8.80) (11.70) (4.06) 
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Variables LI AI TFI 

Year_2014 -12.15 -23.71* -12.90*** 

  (8.75) (11.66) (4.05) 

Year_2015 -12.52 -23.57* -13.00*** 

  (8.63) (11.57) (4.00) 

Year_2016 -12.26 -23.48* -12.87*** 

  (8.57) (11.36) (3.99) 

Year_2017 -12.45 -24.14* -13.03*** 

  (8.76) (11.63) (4.05) 

Year_2018 -12.43 -24.10* -13.01*** 

  (8.72) (11.63) (4.01) 

Sargan Statistic 30.44 29.87 30.45 

Sargan test p-value 0.21 0.23 0.21 

***p < 0.001; **p < 0.01; *p < 0.05   

Note: lower-case letters 𝑦, 𝑥1, 𝑥2, 𝑥4 represents logarithms of 𝑌, 𝑋1, 𝑋2, 𝑋4 respectively and 𝑥3 is the IHS 

transformation of 𝑋3. Parameters standard errors are in brackets.  
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Appendix E: Full results of GMM for Extenso farms and pooled sample 

 Extenso Pooled sample 

Variables LI AI TFI LI AI TFI 

Wheat Production (𝑌) -0.56 -0.81 -0.22 0.79 -0.74 0.46 

  (0.98) (1.27) (0.38) (1.21) (1.18) (0.42) 

Nitrogen (𝑥1) 0.04 -0.51 -0.03 0.08 -0.25 -0.15 

  (0.32) (0.47) (0.14) (0.26) (0.30) (0.11) 

Labor and machinery 

costs (𝑥2) 
1.18 1.73 -0.16 1.39** 2.34*** 0.69** 

  (0.77) (1.34) (0.43) (0.55) (0.67) (0.27) 

Mechanical weeding 

costs (𝑥3) 
-0.78* -1.31* 0.07 -1.07*** -1.41*** -0.04 

  (0.39) (0.66) (0.20) (0.32) (0.40) (0.17) 

Production surface 

(𝑥4) 
0.10 0.78 0.26 -0.90 0.36 -0.96 

  (1.17) (1.54) (0.66) (1.46) (1.39) (0.60) 

Year_2009 -5.77 -6.04 2.50 -12.88* -12.00* -5.39* 

  (5.37) (8.63) (3.74) (6.38) (6.08) (2.78) 

Year_2010 -5.77 -5.96 2.59 -12.92* -11.99* -5.35* 

  (5.39) (8.61) (3.74) (6.36) (6.11) (2.77) 

Year_2011 -5.77 -6.04 2.56 -13.03* -11.99* -5.37* 

  (5.36) (8.48) (3.73) (6.36) (6.11) (2.79) 

Year_2012 -6.13 -6.54 2.45 -13.18* -12.49* -5.41* 

  (5.36) (8.55) (3.74) (6.33) (6.03) (2.76) 
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 Extenso Pooled sample 

Variables LI AI TFI LI AI TFI 

Year_2013 -5.91 -6.68 2.36 -13.10* -12.25* -5.42* 

  (5.37) (8.50) (3.69) (6.30) (6.04) (2.75) 

Year_2014 -5.89 -6.38 2.43 -13.21* -12.21* -5.45* 

  (5.43) (8.45) (3.75) (6.39) (6.14) (2.77) 

Year_2015 -6.10 -6.46 2.40 -13.46* -12.39* -5.56* 

  (5.41) (8.58) (3.74) (6.38) (6.06) (2.75) 

Year_2016 -6.35 -7.37 2.48 -13.25* -12.55* -5.48* 

  (5.31) (8.66) (3.71) (6.26) (5.98) (2.72) 

Year_2017 -5.83 -6.40 2.57 -13.25* -12.45* -5.49* 

  (5.29) (8.56) (3.74) (6.36) (6.07) (2.74) 

Year_2018 -6.62 -6.71 2.40 -13.49* -12.60* -5.51* 

  (5.29) (8.44) (3.71) (6.36) (6.09) (2.73) 

Sargan Statistic 25.90 27.08 40.12 43.67 46.72 50.88 

Sargan test p-value 0.84 0.79 0.22 0.44 0.32 0.19 

***p < 0.001; **p < 0.01; *p < 0.05      

For the Extenso farms, the lag length is four and the lead three, while for the pooled sample, we retained five 
and four respectively for the lag and the lead. 
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Appendix F: Persistent and Transient Efficiency Model for Extenso and Pooled samples 

  Extenso Pooled sample 

 LI  AI TFI LI  AI TFI 

(Intercept) -0.25 -0.02 0.02 -0.15 0.27 -0.04 

  (0.23) (0.25) (0.08) (0.25) (0.22) (0.09) 

Kantonal 

dummies 
Yes Yes Yes  Yes Yes Yes  

ln 𝜆 = ln
𝜎𝑤
𝜎𝑏

 -4.76 -4.26 -4.70 -5.30 -5.10 -5.05 

 (10.76) (6.05) (9.21) (14.09) (10.72) (10.88) 

ln 𝜎

= ln√𝜎𝑤
2 + 𝜎𝑏

2 
0.15*** 0.27*** -0.85*** 0.22*** 0.29*** -0.75*** 

  (0.02) (0.02) (0.04) (0.02) (0.01) (0.03) 

ln 𝜎𝑎
2 -0.44*** -0.50*** -1.66*** -0.24*** -0.28*** -1.26*** 

  (0.12) (0.13) (0.28) (0.07) (0.07) (0.12) 

ln 𝜎𝑐
2 -29.74 -30.18 -26.56 -1.10* -28.35 -1.73*** 

   NA NA NA (0.49)  NA (0.22) 

Mean 

Persistent 

Efficiency 

1.00 1.00 1.00 0.68 1.00 0.77 

Mean 

Transient 

Efficiency 

0.93 0.90 0.95 0.94 0.93 0.96 

Mean Total 

Efficiency 
0.93 0.90 0.95 0.64 0.93 0.73 

***p < 0.001; **p < 0.01; *p < 0.05 ; °p < 0.1    
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Appendix G: Share of Persistent Inefficiency distribution in Total Inefficiency for pooled sample  

 LI TFI 

Min 0.76 0.80 

1st Quartile 0.84 0.85 

Median 0.86 0.86 

Mean 0.86 0.86 

3rd Quartile 0.87 0.87 

Max 0.92 0.90 

 

 


