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Abstract 

Home gardening is extremely important for resource-poor households that have limited access 
to production inputs. However, in South Africa, attempts to implement home garden 
programmes often fail to improve food security of the poor due to water scarcity. However, 
the choice of water for use in urban households is usually limited to piped water supply from 
the municipality.  This paper contributes to the discussion on adaptation strategies by 
investigating the determinants of adopting water-saving technologies through empirical 
evidence from urban Cape Town, South Africa. We estimate the attribute levels and household 
characteristics that influence the adoption of several water-saving technologies. We use a 
choice modelling framework to investigate heterogeneity among farming households based 
on their preferences for individual or groups of characteristics embedded in each water-saving 
technology. Our results show that households are sensitive to the reliability, lifespan, and 
quantity of water saved by the technologies when explaining the attributes that determine 
adoption. Alongside other policy interventions, our results also show that initiatives that 
support the installation of technologies with fewer complexities are favourable in predicting 
positive household response to adoption. 

Keywords: Residential household farming, piped water, urban agriculture, choice 
experiment, Africa. 

JEL code: Q12, Q25, Q31, Q50, L95 
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Home gardens and backyard farm systems are an integral part of local food systems and the 

agricultural landscape of developing countries and have endured the test of time. However, 

cities in sub-Saharan Africa, like many parts of the developing world, face increasing water 

shortages. The availability of water resources to residential households is often affected by 

several bottlenecks including climate change and strategies of regulatory water agencies. The 

impact of climate change has made it increasingly challenging for households, especially in arid 

and semi-arid urban regions. In these regions, increased water scarcity implies limited access 

to water resources for indoor and outdoor uses. Notwithstanding this limitation,  the benefits 

of home gardening include enhancement of food and nutritional security, improvement of 

health (as plants are an important source of medicine for humans and livestock), uplifting the 

socioeconomic status of household, contribution to income generation, improved livelihoods, 

and household economic welfare (Baiyegunhi, 2015; Galhena et al., 2013). 

In this paper, we investigate water-saving technologies as an effective and sustainable demand 

management measure that can reduce the impact of water scarcity and increase household 

access to water for both indoor and outdoor uses. Our investigation is achieved by analysing 

the factors that drive the adoption of water-saving technologies by urban dwellers in Cape 

Town, South Africa. In the context of this study, Cape Town is an important case study because 

it is an extremely water-scarce city with a rapidly growing population of over 4 million people. 

Its dry climate and relatively high per capita water consumption has placed the city at risk of 

water scarcity for many years. In early 2018, after three concurrent winters of low rainfall the 

city almost ran out of drinking water. This is detrimental because water access has a significant 

implication on socioeconomic development and environmental sustainability. Even though 

dam levels returned to normal as rainfall improved in late 2019 (Burls et al., 2019; Simpson et 

al., 2020), evidence suggests the drought was not an isolated event and possibly recurrence 

(Luker & Harris 2019; Pascale et al., 2020). 

A growing literature on urban water management reveals the importance of water-saving 

technologies in reducing overall water demand (Booysen et al., 2019; Fielding et al., 2012). In 

this study, we target four water-saving technologies, namely: i) greywater reuse ii) rainwater 

collection iii) efficient showerheads, and iv) dual flush cistern. A typical South African middle-

income household of four spends 25% of their water use in flushing the toilet, 25% on garden 
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and outdoor activities, 24% on bathing or showering, 13% on laundry, 11% in the kitchen, and 

2% on other activities (Price, Ross, Rabe, & Mander, 2009). Adopting technologies water-saving 

technologies is expected to significantly reduce both indoor and outdoor water use within a 

household (Murwirapachena & Dikgang, 2019). Greywater constitutes about 50% of the total 

wastewater generated within a household and its reuse inside the house and for outdoor may 

lead to significant reductions in household water demand (Carden et al., 2007; Roesner et al., 

2006). Rainwater harvesting is defined as the concentration, collection and storage of 

rainwater for use immediately or at a later time. The harvested rainwater is commonly used 

for toilet flushing, laundry and irrigation. This technology can contribute to more efficient use 

of water resources and greatly increase agricultural productivity, improve food security, and 

alleviate poverty.  

This paper investigates the factors that drive the adoption of water-saving technologies in Cape 

Town. We use a choice modelling framework that compares various utility functions associated 

with different alternatives representing payoffs associated with water-saving technologies. We 

use stated or discrete choice experiments (DCE) to explore the preferences of households for 

the characteristics of mutually exclusive alternatives and investigate the factors that drive the 

choice of an alternative. We also examine the effects of stated choice (SC) experimental design 

methods on households’ choice for the water-saving technology alternatives. Our results 

provide important insights for understanding the conditions that would precipitate rapid and 

wide uptake of water-saving technology among farming households in cities and thereby make 

better use of limited water resources. 

 

2. Brief Related Literature 

Over the past decade, a growing body of literature recognises the importance of household 

farming as a relevant phenomenon able to interconnect a range of environmental, economic, 

and social issues in urban areas (Campisano et al., 2017; Dalla Marta et al., 2018; Hamilton et 

al., 2014; Pulighe et al., 2020; Zezza and Tasciotti, 2010). Some studies highlight household 

behaviour and water end-use as determinants of the volume of water demand. Usually, these 

studies highlight two types of activities based on place of dominant use: Indoor and outdoor 
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use (Brennan et al., 2007; Kiesau, 2020; Manouseli et al., 2019; Mansur and Olmstead, 2012). 

They report that households with significant water need for outdoor activities demand more 

water than those whose water use is mainly limited indoor (Domene and Saurí, 2006; Syme et 

al., 2004).  

Research in economic analysis and modelling urban water conservation methods for 

household farming efficiency is quite rare. The majority of available studies are focused on 

backyard farming in rural areas. For instance, Baiyegunhi (2015), evaluated the determinants 

of farmers' decisions to adopt rainwater harvesting technology in rural Msinga, KwaZulu-Natal 

Province, South Africa, using a binary logistic regression model based on a household survey 

of 180 rural home gardeners. The result of the logistic regression model showed that gender, 

age, education, income, social capital, contact with extension agent and perception/attitude 

towards rainwater harvesting technology are statistically significant in explaining farmers' 

adoption to adopt the technology.  In an urban context, Amos et al. (2018) investigate the 

potential of using roof harvested rainwater to support household agriculture. The study shows 

the general lack of adoption and initiatives to utilise harvested rainwater in urban agriculture, 

given the reality of drought in developing countries. The paper further found that there is a 

considerable potential to supply water to urban agriculture using customised roof rainwater 

harvesting system designs. In another study, Pratt et al. (2019) performed irrigation 

evaluations for 24 urban and household small farms in Cache Valley, Utah. The paper explores 

case studies and identifies trends among gross irrigation depth and field variables including 

field size, irrigation method, application uniformity, and scheduling practices. Results show a 

great degree of heterogeneity in irrigation methods, equipment used, and management 

practices. Campisano et al. (2017) conducted a critical review of the state of the art of 

application of rainwater harvesting systems to clarify some key aspects that may determine 

their successful implementation. They find out that economic constraints and local regulations 

strongly influence the degree of implementation of rainwater harvesting systems and 

technology selection. 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/irrigation-method
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3.  Design of the choice experiment 

In this study, the water-saving technologies we considered are i) greywater reuse ii) rainwater 

collection iii) efficient showerheads, and iv) dual flush cistern. Greywater constitutes about 

50% (about 68litres/capital/day) of the total wastewater generated in Cape Town households 

(Carden et al., 2007; Roesner et al., 2006). An integrated domestic rainwater harvesting 

involves collecting, storing, and channelling rainwater to the toilet for flushing and gardening 

irrigation outlets instead of potable water. Replacing a 12L cistern with a 3L dual cistern saves 

about 75% of water (Jansen and Schulz, 2006; Murwirapachena and Dikgang, 2019; Zaied, 

2018) in SA households.  

Table 1 shows the selected attributes of each water-saving technology, and it describes their 

associated levels. Previous studies highlight "Reliability of Access" as one of the major factors 

that influence the adoption of water-saving technologies (Kaur & Rampersad, 2018; 

Zaunbrecher, Kowalewski & Ziefle, 2014). Households are more willing to adopt new 

technology that is perceived to be reliable when water can be accessed immediately it is 

needed. In our case, this refers to how dependable and reliable water supply from a given 

technology is. It considers the unpredictable nature of rainfall and the predictable availability 

of wastewater and cistern water within the household. The two levels of this attribute are: 

Reliable Access and Unreliable Access. The second attribute is "Perceived Health Risk". The 

level of health risk associated with a technology could largely influence its adoption rate. This 

risk can be present in the form of a foul smell, degree of water contamination and the 

possibility of diseases and infection to the household. This attribute has two levels: Health risk 

and No health risk. The third attribute identified in this study is the "Complexity of technology". 

This refers to the ease of use of a given technology and the expertise involved in installing and 

operating it. The ease of use of technology could have a huge influence on respondent's 

adoption rate (Makki and Mosly, 2020; Sharma et al., 2015). The two levels of the attribute 

are; easy (when no extra training is required before usage of the technology) and hard (when 

very sophisticated and intensive training is needed before installation of the technology). The 

fourth attribute is the "Ease of Maintenance", this differs from the above third attribute mainly 

because maintenance and services are done post technology installation. The relevance of this 

attribute can be distinguished based on the needed frequency of maintenance of technology 

that will ensure optimal performance, as well as the expertise required for such maintenance. 
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It also captures both the ease of acquisition of the maintenance skills and the intensity of 

training needed to service the technology after installation. The identified attribute levels are: 

Difficult and Easy. Investing in water-efficient technologies is expected to reduce the 

household's monthly water bill by reducing the quantity of water demanded from the 

municipality. Thus, the fifth attribute considered in this study is "Water Quantity Saved". The 

average urban household of 5 people uses 640 liters of water per day in South Africa (COCT, 

2013). Technologies that reduce the quantity of water used for specific household activities, 

store rainwater and make wastewater available for reuse will ultimately reduce the total 

quantity of water demanded by this household. The attribute levels are; above 25% (when 

technology saves up to 25% of average household water demand) and below 25% (when 

technology saves less than 25% of average household demand. The sixth attribute identified is 

the "Costs of Technology", which can also influence adoption decisions within households. The 

adoption of technologies with high cost of purchase and installation could be limited in low-

income households (Kaur and Rampersad, 2018). Four levels of costs were examined for this 

attribute. Finally, previous studies report the "lifespan of a technology" as an important factor 

that influences technology adoption (Heinz, 2013; Peek et al., 2016). In choosing water-saving 

technologies, a household is more willing to adopt technologies that have a longer lifespan. 

The two levels of the attribute are "less than 5 years" and "more than 10 years". There are 256 

possible combinations of the attributes and their levels as shown in Table 1, with six attributes 

varying across two levels each and one attribute varying across four levels (26X 41).  
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Table 1: Definition of Attributes and their Level 

Attributes  Definition  Levels of attributes 

Reliability of Access This indicates how dependable and reliable 
water supply from the technology is. 

Reliable Access: Water can be accessed from selected technology 
every time it is needed. 

Unreliable Access: Access to water from technology may be seasonal. 

Perceived Health Risk This refers to the households' perception of 
possible health-related risks, discomfort or 
stress associated with the use of a technology 

High risk: Selected technology uses chemicals products in water 
treatment and may emit foul smells. 

No health risk: No chemical products are used in technology and 
there is no emission of foul smell. 

Complexity of Technology This refers to the ease of use of technology 
and the expertise involved in the installation 
and day-to-day operation. It focuses on 
whether technology can be operated with no 
prior training or not. 

Hard: When high-level expertise and training is needed for the 
installation and operation of the technology. 

Easy: When technology can be operated with no prior training. 

Ease of Maintenance  This captures whether intensive training is 
needed for the maintenance or servicing of 
technology to ensure optimal performance. It 
also captures the frequency at which 
maintenance or servicing is needed. 

Difficult: When intensive training is needed for the maintenance of 
technology and maintenance is required at least once a month. 
 

Easy: When maintenance is easy and rarely necessary 

 Water Quantity Saved This refers to the percentage of water saved in 
a household after technology adoption.  

Above 25%: If technology saves more than 25% of the average 
water demand of household before installation. 

Below 25%: If the presence of technology does not reduce household 
water demand by up to 25%. 

Costs of Technology Cost of purchasing and installing the technology R5,000; R10,000; R15,000; R20,000 

Lifespan of the technology This refers to the average number of years the 
technology can be used optimally without the 
need for replacement. 

Less than 5 years 
 

More than 10 years 
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4. Theory and Methods 

The analysis of data derived from the discrete choice experiment is grounded in Lancaster’s 

attribute theory of value and consumer choice (Lancaster, 1966), and has an econometric basis 

in random utility theory (McFadden, 1974). Where a household head 𝑖’s utility, 𝑈, of a water-

saving technology 𝑗 out of a set of available alternatives 𝑘, is assumed to consist of a 

deterministic and a stochastic element: 

𝑈𝑖𝑗 = 𝑉𝑖𝑗(𝑥𝑗 , 𝑧𝑗 , 𝑡) + 𝑒𝑖𝑗                                        (1) 

Where 𝑉 depends on the characteristics of the technology 𝑥𝑗, individual specific characteristics 

𝑧𝑗, and the price 𝑡 and 𝑒𝑖𝑗 is the unobserved random component. Assuming that the error 

components are distributed independently and identically (IID) following a type 1 extreme 

value distribution (Louviere et al., 2000), The theory states that an individual will choose an 

alternative 𝑘 from a finite set of alternatives 𝐶, given the indirect utility of 𝑘 is greater than the 

indirect utility of any other alternative, 𝑗. This means that 

𝑈𝑖𝑘 > 𝑈𝑖𝑗  ⟹ 𝑉𝑖𝑘 + 𝑒𝑖𝑘  >  𝑉𝑖𝑗 + 𝑒𝑖𝑗   ∀ 𝑗 ≠ 𝑘; 𝑗, 𝑘 ∈ 𝐶 )   (2) 

The probability that an individual chooses alternative 𝑘 is the same as the probability that the 

utility of alternative 𝑘 is greater than the utility of any other alternative of the choice set 

(Adamowicz, 2004). In our case, the utility definition of the choice-task among five alternatives, 

one of which is the status quo option, is 

𝑈𝑘𝑖𝑛

{
 
 

 
 
𝑉(𝐴𝑆𝐶, 𝑥𝑘𝑖𝑛, 𝛽𝑖 , 𝜀𝑖 ) + 𝑒𝑘𝑖𝑛,    if 𝑘 = 1;

𝑉(𝐴𝑆𝐶, 𝑥𝑘𝑖𝑛, 𝛽𝑖 , 𝜀𝑖 ) + 𝑒𝑘𝑖𝑛,    if 𝑘 = 2;

𝑉(𝐴𝑆𝐶, 𝑥𝑘𝑖𝑛, 𝛽𝑖 , 𝜀𝑖 ) + 𝑒𝑘𝑖𝑛,    if 𝑘 = 3;

𝑉(𝐴𝑆𝐶, 𝑥𝑘𝑖𝑛, 𝛽𝑖 , 𝜀𝑖 ) + 𝑒𝑘𝑖𝑛,    if 𝑘 = 4;

𝑒𝑘𝑖𝑛,                             if 𝑘 = status quo

                                  (3) 

where 𝑖 denotes the individual, 𝑘 the alternative, and 𝑛 the choice-occasion. 𝑉𝑘𝑖𝑛, the indirect 

utility is a function of a vector of variables explaining choice 𝑥𝑘𝑖𝑛 and chosen vectors of 

individual-specific parameters,  𝛽𝑖 .  𝛽𝑖 is assumed to take on a multivariate normal distribution 

where the off-diagonal elements of the covariance matrix are zero. 𝜀𝑖 is an error component 
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associated with the two non-status quo choices and is assumed to be normally distributed 

white noise, 𝜀𝑖 ∼ 𝑁 (0, σ
2). This error component reflects that there may be additional 

variance related to the four non-status quo alternatives, because it is cognitively more 

demanding for respondents to evaluate four complex alternatives in each choice set as 

opposed to the status quo (Beharry-Borg et. al., 2009; Hensher et al., 2015; Morse-Jones et al., 

2012). Lastly, 𝑒𝑘𝑖𝑛, is a random error term that is iid extreme value type 1. 

In order to calculate the choice probability for a given choice-occasion 𝑛, we use a 

random we use a random parameter logit model (RPL) and assume that individuals seek to 

maximise utility. Conditional on the individual-specific parameters,  𝛽𝑖, and error components, 

𝜀𝑖 , the probability that respondent 𝑖 chooses a specific alternative 𝑘 in choice-task 𝑛 (of the 

sequence 𝑛 = 1, . . . , 𝑁) from the five alternatives ( j = 1, . . . , J ) is logit: 

Pr(𝑘𝑖𝑛| 𝛽𝑖, 𝜀𝑖 ) =
exp(𝛽𝑖

′𝑋𝑘𝑖𝑛 + 𝜀𝑖)

∑ exp(𝛽𝑖
′𝑋𝑗𝑖𝑛 + 𝜀𝑖)

𝐽
𝑗

                             (3)  

If we assume independence over choice-tasks made by the same individual, the joint 

probability of an individual making a sequence of choices is the product of the, in our case, ten 

probabilities. The probability of choice unconditional on the error component is obtained by 

integrating over the error-component space. Following this, the marginal probability of choice 

can be derived from integrating over the distribution functions for the random  𝛽− parameters 

(Beharry-Borg et al., 2009; Train et al., 1987). Following the above, the probability of choosing 

alternative 𝑘 becomes: 

Pr(𝑘𝑖𝑛) = ∫(∏ [
exp(𝛽𝑖

′𝑋𝑘𝑖𝑛+𝜀𝑖)

∑ exp(𝛽𝑖
′𝑋𝑗𝑖𝑛+𝜀𝑖)

𝐽
𝑗

]𝑁
𝑛=1 )𝑓(𝛽)𝑑                   (4) 

Where 𝑓(𝛽) represents the distribution function for 𝛽, with mean 𝑏 and variance 𝑊. The 

model is not sensitive to the independence of irrelevant alternatives (IIA) condition and, 

furthermore, it allows for individual-specific 𝛽 estimates based on specified distributions (Train 

et al., 1998). This means that the model utilises the information that each respondent has 

answered several choice sets, by making taste parameters constant over choices within 

individuals but not between individuals. Including this information is likely to enhance the 

explanatory power of the model. Even though the integral in (4) does not have a closed-form, 
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the choice probability in the RPL model can be estimated through simulation. The unknown 

parameters 𝜃, such as the mean and variance of the random coefficient distribution, can be 

estimated by maximising the simulated log-likelihood function. For a given mean and variance 

of a random coefficient distribution, the simulated probability  𝑃̆𝑘𝑖𝑛 is strictly positive and twice 

differentiable with respective to the unknown parameters 𝜃. Therefore, the simulated log-

likelihood function log-likelihood is: 

𝐿𝑜𝑔𝐿(𝜃) =  ∑∑𝑑𝑘𝑖𝑛

𝐽

𝑘=1

ln 𝑃̆𝑘𝑖𝑛                                  (5)

𝐼

𝑖=1

 

Where 𝑑𝑘𝑖𝑛=1 if individual 𝑖 chooses alternative 𝑘 and zero otherwise. Each individual is 

assumed to make choices independently and only make the choice once. The value of 

estimates that maximises the SLL is called the maximum simulated likelihood (MSL) estimate. 

We estimate the marginal effects of each attribute in order for the results to be of more policy 

relevance. Additionally, understanding the marginal effects allows us to test for variations in 

welfare measures by examining the marginal willingness to pay (MWTP) estimates. MWTP 

estimates show the marginal rate of substitution (MRS) between each attribute and the 

monetary attribute; this is an important output of choice models, as it gives average estimates 

of what respondents are prepared to pay for or against each attribute (Hensher et al., 2015).  

Equation (14) below shows the expression of the MWTP. 

𝑊𝑇𝑃𝑋 = 
∆𝑋

∆𝐶
= −

𝛿𝑈𝑖𝑗

𝛿𝑋𝑗

𝛿𝑈𝑖𝑗

𝛿𝐶𝑖

= −
𝛽𝑗

𝜇
= 𝑀𝑊𝑇𝑃                                         (6) 

 

5.  Results 

Table 2 shows the descriptive statistics of the respondents for both the pilot and main surveys. 

During data inputting for the pilot survey, data was captured such that each individual 

household head was entered 30 times to include the choices they made for five options and 

six different choice sets. In the main survey data was captured such that each individual was 

entered 40 times to include the choices they made for five options and eight different choice 

sets. Responders averaged 54 years old in the pilot and 50 years of age in the main survey. The 



11 
 

average household size is 5 in the pilot survey while it is 4 in the main survey. The gender of 

the household heads showed minor differences in both surveys, from 82% male respondents 

in the pilot survey to 83% in the main survey. More results of our main survey showed that 

66% of the respondents are employed and about 16% of the respondents have total yearly 

household income of above one million Rand. The average tap water consumption per month 

is 6262L while the mean monthly water bill is R3671.  

Table 2: Descriptive Statistics 
 

Mean (Std. Dev.) 

Variables Pilot Survey (n=72) Main Survey (n=303) 

Age (Years) 54.24 (9.61) 49.66 (15.61) 

Gender (1 =male, 0 = female) 0.82 (0.39) 0.83 (0.37) 

Household Size 4.58 (3.27) 3.70 (1.47) 

Number of employed household member 2.15 (1.39) 1.83 (1.32) 

Educational Level (1=Primary education, 
2=Secondary school, 3=Some technical 
certificate/diploma, 4=Bachelor’s degree, 
5=Honor’s degree, 6=Professional/Master’s 
degree, 7=Doctorate degree) 

4.22 (1.69) 3.55 (1.53) 

Total Annual Household Income  
(1=R50,000 or below,  
2=R50,001 to R100,000,  
3=R100,000 to R150,000 
4=R150,000 to R200,000 
5=200,000 to R350,000 
6=R350,000 to R500,000 
7=R500,000 to R750,000 
8=R750,000 to R1,000,000 
9=R1,000,000 to R2,000,000 
10=Above R2,000,000) 

7.86 (2.71) 5.41 (2.92) 

 

5.1  RPL Model 

To test all attributes for presence of preference heterogeneity, RPL model assumes that all the 

variable coefficients are distributed randomly following a normal distribution. In the RPL model 

estimation, not all the attributes were found to be significant. As shown in Table 3, only four 

attributes in the base RPL model are significant. Access to technology and lifespan of the 

 
1 1 South African Rand = 17 US Dollars 
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technology shows statistical significance at 5% while the cost of the technology is significant at 

1%. The estimates show that the cost of water-saving technologies, their access, lifespan, and 

the quantity of water they save are important determinants technology adoption within 

households. The interactions of the Income and water quantity saved, income and health risk 

and Waterbill and Reliability of technology all show statistical significance in the RPL model. 

Table 3 also includes columns for z-statistics which indicate the relative explanatory power of 

the various attributes in respondents' choice of water-saving technology. Under the base RPL 

model the attributes with the largest z-values are the quantity of water saved and lifespan of 

technology. 

 

Table 3: Random Parameter Logit 

 Base RPL RPL Interaction 

Attributes Coefficient 
(SE) 

|𝒛 − 𝒔𝒕𝒂𝒕| Coefficient 
(SE) 

|𝒛 − 𝒔𝒕𝒂𝒕| Coefficient  
(SE) 

Reliability of Access -0.293** 
(0.135) 

-2.16 0.369 
(0.406) 

0.91 -0.285*** 
(0.065) 

Perceived Health 
Risk 

-0.048 
(0.079) 

-0.60 0.188 
(0.326) 

0.58 0.056 
(0.056) 

Comp. of 
Technology 

0.089 
(0.059) 

1.51 -0.496* 
(0.297) 

-1.67 0.137*** 
(0.051) 

Ease of 
Maintenance 

-0.063 
(0.067) 

-0.95 -0.474 
(0.331) 

-1.43 0.116** 
(0.057) 

Water Quantity 
Saved 

0.090* 
(0.054) 

1.68 0.466 
(0.290) 

1.60 0.169*** 
(0.050) 

Costs of 
Technology 

-2.59e-05*** 
(8.81e-06) 

-2.95 2.92e-5 
(4.33e-5) 

0.67 -5.13e-
05*** 

(7.51e-06) 

Lifespan of 
technology 

0.128** 
(0.064) 

2.00 -0.130 
(0.297) 

-0.44 0.157*** 
(0.051) 

Income × Reliability   -0.035 
(0.028) 

-1.26  

Income × Health 
Risk 

  0.038* 
(0.023) 

1.67  

Income × 
Complexity 

  0.009 
(0.021) 

0.41  

Income × 
Maintenance 

  -0.007 
(0.023) 

-0.29  

Income × quantity   -0.038* -1.84  



13 
 

(0.021) 

Income × Cost   1.30e-06 
(3.05e-06) 

0.43  

Income × lifespan   0.027 
(0.021) 

1.31  

Waterbill × 
Reliability 

  -0.001** 
(3.18e-04) 

-1.99  

Waterbill × Health 
Risk 

  4.0e-04 
(2.57e-04) 

1.55  

Waterbill × 
Complexity 

  -4.56e-05 
(2.28e-04) 

-0.20  

Waterbill × 
Maintenance 

  1.05e-04 
(2.64e-04) 

0.40  

Waterbill × 
quantity 

  -1.72e-04 
(2.26e-04) 

-0.76  

Waterbill × Cost   3.37e-08 
(3.44e-08) 

0.98  

Waterbill × 
Lifespan 

  2.55e-04 
(2.31e-04) 

1.10  

Log-likelihood 
Nr. Obs. 

Nr. Respondents 
AIC 
BIC 

-3724.419 
12,120 

303 
7470.837 
7534.562 

 -3661.766 
12,120 

303 
7429.533 
7736.571 

 -3773.157 
12,120 

303 
7560.315 
7600.867 

Notes: Robust standard errors presented in parentheses. ***, **, *, next to coefficients 
represents statistical significance at the 1%, 5%, and 10% respectively. 
 
 
The marginal willingness to pay (MWTP) result in Table 4 shows attributes that are valuable for 

households to invest in water-saving technologies. When we consider the MWTP across base 

models, we observe that the RPL base model have the high MWTP for complexity of 

technology, quantity of water saved, and lifespan of technology. While the RPL with 

interactions shows the highest MWTP for complexity of the technology, ease of maintenance 

and lifespan of the technology. This result indicates that both complexity of water-saving 

technologies and the lifespan of technologies are major determinants for adoption of 

technologies and are important attributes to households since they have high MWTP across all 

four models. In making their choice of water-saving technologies, households prefer 

technologies that can be easily operated and last for a long time after installation. 
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Table 4: Average Household marginal willingness to pay  

 Base RPL RPL interaction 

Attributes Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

Reliability of 
Access 

-11277.49 -26059.77   
3504.79 

-12612.98 -70599.73    45373.77 -5556.72 

Health Risk -1838.19 -7962.31     
4285.93 

-6436.62 -34247.02    21373.78 1097.90 

Comp. of 
Technology 

3413.38 -745.42     7572.19 16978.12 -29885.73   63841.98 2665.17 

Ease of 
Maintenance 

-2442.28 -8281.89   3397.34 16234.22 -31961.54     64429.97 2256.15 

Water 
Quantity 

Saved 

3487.2598 -1662.81     
8637.33 

-15944.98 -61534.19    29644.24 3300.03 

Lifespan of 
technology 

4941.89 -973.87     
10857.65 

4464.85 -19464.43    28394.14 3071.38 



15 
 

6. Conclusion and Policy Implication 

This paper has investigated the factors driving the adoption of four water-saving technologies 

among farming households by using econometric models that account for in Cape Town, South 

Africa. A CE study of seven attributes, which were identified as relevant for household water-

saving decisions, was applied.  In our pilot survey estimation, an orthogonal design estimate 

was administered to 72 respondents in other to generate parameter priors that were then 

used in our D-efficient design estimation for 303 respondents. An in-depth understanding of 

households' preference for water-saving technology is of interest since it provides the 

foundation for urban water management, which will ultimately impact cities' sustainable 

environmental policy goals. 

The results show that households are sensitive to the reliability, lifespan and quantity of water 

saved by the technology when explaining the attributes that determine adoption. We also 

found that respondents have strong preference for the technologies with least cost of 

purchase. Policy interventions should support initiatives that attempt to encourage better 

water-saving technologies that consider cost, longevity and increased water saving capacity. 

The implication of this is that investment in research and development should be promoted 

around such technologies. Alongside these technical interventions, our results also show the 

initiatives that support installation of technologies with less complexities are favourable in 

predicting positive household response to adoption. Finally, costs may also hinder adoption of 

water-saving technology. Policy interventions should be articulated around possible financial 

support that could assist poor households in acquiring such technology. 
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