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Abstract 

Technical efficiency is an important indicator of competitiveness and sustainability at the 
farm level. Inefficiency is usually assumed to stem from poor management and it is modelled 
in Stochastic Frontier Analysis (SFA) as a draw from the half-normal or exponential 
distribution. Although these assumptions are convenient, they may fail to capture accurately 
farmers’ efficiency behaviour. This study measures the technical efficiency of the Irish dairy 
sector, using a generalized gamma (GG) for the inefficiency term (Griffin and Steel 2008). 
The GG can accommodate the possible multimodality and skewness of the efficiency 
behaviour, which may arises from the wider sustainability goals of farmers. We also use a 
generalized gamma mixture of two components (GG2), mainstream and very efficient farms. 
We allow the probability of farmers to be allocated to these components conditional on their 
stocking density, purchased concentrate feeds per milk output and ratio of total labour units to 
cows. We find that farms with higher stocking density are less likely to be in the very 
efficient group. Farmers who use more purchased feeds per milk output and more labour per 
cows are more likely to be in the very efficient group.  

Keywords Stochastic frontier analysis, technical efficiency, Irish dairy sector, Bayesian 
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1  Introduction 

The recent EU Green Deal and in particular the Farm to Fork Strategy aim overall to promote 
a more robust and resilient food system that will result in environmental, health and social 
benefits, and economic gains for citizens (European Commission 2020a; European 
Commission 2020c). The policy has (among others) a primary focus on the sustainable 
livelihood for primary producers, and their transition towards more sustainable practices, 
such as minimizing the use of pesticides, antimicrobials and fertilisation and improve animal 
welfare. The vision of Farm to Fork for promoting a more sustainable way of farming in EU 
will be supported by the Common Agricultural Policy (CAP) (European Commission 2020b). 

The key element for the transition towards a more sustainable farming in CAP and Farm to 
Fork strategy is innovation: knowledge and advice are crucial innovation aspects that will 
enable all food chain actors to become sustainable. The Commission in cooperation with the 
EU Member States will strengthen the role of the European Innovation Partnership 
“Agricultural Productivity and Sustainability” (EIP-AGRI) in the Strategic Plans in order to 
accelerate the innovation and knowledge transfer; there will be a greater responsibility placed 
on Agricultural Innovation System (AIS) actors and Farm Advisory Services (FAS) for 
achieving the Farm to Fork objectives and targets (European Commission 2020c; European 
Commission 2018a; European Commission 2018b; EU SCAR 2019). 

In Ireland, the AIS is one of the strongest and most integrated in EU, where the main 
mediator is the Teagasc FAS (EIP-AGRI 2018). One of the strongest points of the Irish AIS 
lies on the research and knowledge transfer in the dairy sector that creates considerable 
knowledge flows (Renwick et al. 2014; Läpple et al. 2016). The Teagasc FAS promote 
technologies that will allow Irish dairy to expand their production volume in a post quota 
environment, but in a more sustainable manner (O’Dwyer 2015; Läpple et al. 2019; Läpple et 
al. 2022): the economic, social and environmental dimensions of sustainability are deemed 
equally important. 

The achieved production growth of the Irish dairy sector since since 2009 that was aligned 
with an expansion of the dairy herd and higher milk yields per cow, coupled with the entrance 
of some new dairy farmers (Kelly et al. 2020). However, given the low land mobility and 
availability in Irish agriculture (Kelly et al. 2020), the projected increased size of the national 
dairy herd implies an increase in stocking rate in the future (Teagasc 2020). Higher stocking 
rate in pasture-based systems is associated with increased chemical fertiliser and 
supplementary feed importation and labour shortages, resulting in further environmental and 
social (e.g. workload) pressures (Di and Cameron 2002; Teagasc 2021b; Kelly et al. 2020). 
Therefore, the Teagasc FAS aim to develop targeted advisory programmes (e.g. Teagasc 
2021a) in order to ensure that the economic gains from optimal resource use are not at the 
expense of the environmental and social dimension. 

This paper aims to understand the possible trade-offs between the economic, social and 
environmental sustainability dimensions, which arise from the more efficient use of 
production factors in the Irish dairy production. Instead of using the widely used Latent Class 



Model (LCM), we use the generalized gamma (GG) distributions and a mixture of 
generalized gamma distribution with two components (GG2C) for the inefficiency term, 
proposed by Griffin and Steel (2008). The GG is a quite flexible distribution that can 
accommodate better the diverse efficiency behaviour of farmers (e.g. various sustainability 
goals) than the usual exponential and half-normal inefficiency models.  

First, we measure the technical efficiency of the Irish dairy sector using a GG distribution, a 
half normal and exponential inefficiency distribution. We show that the latter overestimate 
the average technical efficiency and the returns to scale of farmers, while the flexible GG fits 
the data better. Second, we estimate a GG2C for the inefficiency term, and; we allow the 
components in GG2C to depend on farm characteristics, through the probability of belonging 
to either component. Hence, the paper makes two main contributions: 1) it informs policy 
making that aims to foster technical efficiency at the farm level, promoting a more 
sustainable way of farming, and; 2) it suggests an alternative, more flexible, way for 
measuring the technical inefficiency at the farm level and examining the dependency of 
inefficiency components on farms characteristics. 

The remainder of the paper contains five more sections. Section 2 is divided into two 
subsections: the first subsection discusses the conceptual framework on the structural link 
between Decision Making Units’ (DMUs) production characteristics and inefficiency used in 
empirical literature and its limitations; the second subsection discusses how the approach of 
Griffin and Steel (2008) can be used to address these limitations. Section 3 presents the 
specification of the empirical models employed in this paper and the estimation procedure 
details in Bayesian inference. Section 4 presents the summary statistics of the utilized dataset. 
Section 5 presents the results. Section 6 discusses the findings and concludes with key policy 
implications. 

2  Background 
  
2.1  Linking farmers’ characteristics to efficiency behaviour 

 Technical efficiency is a relative measure of productivity and an indicator of resource waste 
in agricultural production and thus it has important for policy implications regarding the 
sustainability of agricultural production (Hansson et al. 2018). It reflects the maximal output 
given a certain level of input and technology and it is normalized usually (e.g. between 0 and 
1) relative to some benchmark, such as the observed frontier outcome (Kumbhakar et al. 
2018). There are two main approaches to approximate technical efficiency: Stochastic 
Frontier Model (SFM) and the Data Envelopment Analysis (DEA). 

The main advantage of SFM compared to DEA, is that it can distinguish technical efficiency 
from the statistical noise component. The latter absorbs random shocks, such as extreme 
weather events, which often affects the agricultural production. A drawback of the SFM is 
that the inefficiency term lacks of any specific structural interpretation of why inefficiency 
exists (Kumbhakar et al. 2018). Inefficiency is seen as an outcome of poor management, 
which may arise from sub-optimal use of inputs such as less motivated workers or due to 
improper capital use (e.g. asymmetric information) or other reasons which are not observed 



by the researcher (Kumbhakar et al. 2018). Without a specific structural link it is difficult to 
know just how to treat inefficiency in empirical analysis (Kumbhakar et al. 2018). 

A common assumption in agricultural productivity and efficiency analysis is that 
inefficiencies are conditional on farmers’ production characteristics (e.g. Alvarez and del 
Corral 2010; Sidhoum et al. 2022). For instance, farmers at more extensive dairy production 
systems may be prone to make more production mistakes due to the diverse nature of 
production at extensive production decisions (planting, harvesting, silage, etc.) (Sidhoum et 
al. 2022). On the contrary, dairy farmers at more intensive production systems may make less 
production mistakes because they are relying more on purchased feeds, which results in less 
technical inefficiency (Sidhoum et al. 2022). As a consequence, more farmers at intensive 
dairy systems may be better managers, i.e. more efficient, than farmers in extensive dairy 
systems (e.g. Abdulai and Tietje 2007; Alvarez and del Corral 2010; Skevas et al. 2017; Ma et 
al. 2019). A suitable methodological approach in SFM that allows Decision Making Units 
(DMUs) to vary widely (e.g. intensive/extensive) is the Latent Class Model (LCM) 
(Kumbhakar and Orea 2004). 

The LCM is a mixture model that classifies DMUs into a finite number of classes, while it 
allows the allocation of DMUs to the classes to be determined by their characteristics. In 
agricultural economics, the LCM is widely used for examining the differences in efficiencies 
and marginal productivities between classes; and the allocation of farmers to these classes 
conditional on their characteristics (Alvarez and del Corral 2010; Alvarez et al. 2012; Alvarez 
and Arias 2015; Sauer and Morrison Paul 2013; Kellermann and Salhofer 2014; Orea et al. 
2015; Martinez-Cillero et al. 2019; Sidhoum et al. 2022; Dakpo et al. 2021a; Dakpo et al. 
2021b; Grovermann et al. 2021). Some of the farmers’ characteristics that are used as class 
membership determinants are feeds per cow, stocking density, labor per cow, capital per cow, 
agri-environmental subsidies, as an effort to inform better policy making (Sidhoum et al. 
2022). 

The major limitation in the LCM is that the efficiency behaviour of farms within classes 
might be more heterogeneous, which is not captured by the LCM. This may result in 
suboptimal policy implications (Sauer and Morrison Paul 2013).  Specifically, farmers, either 1

in extensive or intensive dairy systems, may use production factors for wider sustainability 
goals other than purely economic gains (Lagerkvist et al. 2011; Howley 2015; Hansson and 
Lagerkvist 2015; Hansson et al. 2018). As a consequence, part of production decisions may 
be rational and may erroneously be attributed to poor management (e.g. farmers may 
prioritize other objectives over financial outcomes). Hence, inefficiency in empirical analysis 
does not always reflect poor management decisions. This is known as the “rational 
inefficiency hypothesis” (Bogetoft and Hougaard 2003). Hansson et al. (2018) provided 
empirical evidence to support the rational efficiency hypothesis on a sample of Swedish dairy 
farms, showing that lower efficiency levels are associated with relatively high levels of the 
Animal Welfare (AW) improving measures. 

 Alternatively, one could use a Random Coefficient Model (RCM) for capturing the individual farmer’s heterogeneity in the sample 1
(Emvalomatis 2012; Skevas 2019; Njuki et al. 2019). Nevertheless, the RCM does not allow for examining the probability of farmers’ 
allocation to more or less efficient classes conditional on their characteristics.



In a relevant study, Sidhoum et al. (2022) used a number of Spanish crop farmers’ 
characteristics in a LCM setting to separate farmers into two classes: environmental and 
social sustainable farms. They found that the average technical efficiency of the 
environmental sustainability class is lower than in the social sustainability class. The authors 
argue that while it is easier for farmers to combine social objectives with technical efficiency; 
farmers who put higher weight on environmental protection, may be more prone to 
production mistakes which leads to higher inefficiency. This finding is in line with Hansson 
et al. (2018), supporting the existence of rational inefficiency hypothesis in dairy farming. 
Nevertheless, even if the LCM is used to separate farmers into classes based on their 
objectives, such as social and environmental sustainability classes, the problem remains; 
farmers may have more diverse efficiency behaviour which cannot be captured from the 
inefficiency term due to the usual inefficiency specifications. 

2.2  Generalized Gamma distribution for the inefficiency term 
 In general, inefficiency in SFM is usually specified as an unobserved term, that it is assumed 
to be a draw from a non-negative distribution. The most common choices for the 
distributional assumptions for the inefficiency term in agricultural production, including the 
LCM approaches, are the half normal and exponential distributional (e.g. Alvarez and del 
Corral 2010; Emvalomatis 2012; Martinez-Cillero et al. 2019; DeLay et al. 2021; McFadden 
and Rosburg 2021).  These distributional assumptions have a zero mode, which is aligned 2

with an economic interpretation: the inefficiency of most of the DMUs will be close to zero 
(Stevenson 1980). This is a convenient theoretical and methodological assumption, justified 
by the forces of competition; and it links inefficiency to managerial competence, by imposing 
the assumption that inefficient behavior monotonically decreases at higher levels of 
inefficiency (Stevenson 1980; Papadopoulos 2021). However, these distributions have two 
(interrelated) limitations when it comes to describing the efficiency behaviour of DMUs. 

First, DMUs might be quite diverse and their characteristics which are related to their 
management ability (e.g. training, intelligence etc.) in reality are unlikely to be distributed in 
a monotonic fashion (Stevenson 1980). In empirical analysis then, both distributions may 
tend to cluster to lead to a cluster of highly efficient firms (Griffin 2004; Griffin and Steel 
2008; Kumbhakar et al. 2018; Steel 2020). This is relevant in the context of agricultural 
production, since the managerial ability of farmers differ in terms of their education, 
experience, motivation etc. Thus, inefficiency behavior of farmers may not decreases 
monotonically at higher levels of inefficiency. As a consequence, the exponential and half-
normal distribution may overestimate the efficiency of farmers. One could relax this 
assumption by allowing inefficiencies distribution parameters to be a function of variables 
related to (e.g. the education of the farmer); but management abilities might be more complex 
than the available datasets would allow. 

Second, and most important as deemed by the aims of this study, these distributions may fail 
to capture accurately possible multimodality and different skewness that might exist in the 

 Beyond the half normal (Aigner et al. 1977) and exponential distributional (Meeusen and van den Broeck 1977) inefficiency models, a 2
few other alternative choices have been proposed in productivity and efficiency analysis of various sectors, such as the truncated normal 
(Stevenson 1980), gamma (Greene 1990), Weibull (Tsionas 2007), Rayleigh (Hajargasht 2015), and many more (e.g. Wheat et al. 2019; 
Feng et al. 2019).



data, (Griffin and Steel 2008; Bonanno et al. 2017). As explained before, even within classes, 
farmers may have diverse sustainability goals and put different weight on each of those. 
Thus, multimodality and various skewness may exist in the data due to the diverse 
inefficiency behaviour of farmers. 

Thus, we aim to account for both limitations that come with the choice of the exponential of 
half-normal distribution for the inefficiency term in a LCM framework. For this reason, 
instead of using the LCM, we use the generalized gamma inefficiency model, following 
Griffin and Steel (2008). The GG is a flexible distribution, where the exponential and half-
normal can be seen as its special cases (Griffin and Steel 2008). While efficiencies of farmers 
with classes in LCM are arbitrarily fit as negatively skewed with its mode at zero (as dictated 
by the restrictive exponential and half-normal distribution), the GG uses data information in 
order to draw inferences about the modality and skewness of the inefficiency. 

We first estimate a GG, and Exp and HN inefficiency distribution model. We expect a priori 
that the average efficiency in the GG will be lower than in the Exp and HN. In addition, we 
would expect that production elasticities in Exp and HN of inputs such as feeds, labour, 
capital and livestock to be higher, compared to the GG. The main reason is that Irish dairy 
farmers have wider sustainability goals, which captured by the restrictive exponential and 
half-normal inefficiency distributions. We further estimate the mixture of generalized gamma 
distribution, GG2C, with two components: mainstream and very efficient farmers. The 
distinction of these two components takes place without estimating separate frontier such as 
in the LCM. We further examine the allocation of farmers into the mainstream and very 
efficient class conditional on selected farmers’ characteristics. 

3  Methodology 
This section is divided into five subsections. The first section specifies the stochastic frontier 
model; no distributional assumptions for the inefficiency term are specified. The second 
subsection presents the half-normal and exponential distributional assumptions for a 
stochastic frontier. The third subsection presents the generalized gamma inefficiency model. 
The fourth subsection extends the generalized gamma inefficiency model into a mixture of 
two components. 

3.1  Stochastic frontier specification 
 We use an output distance function to describe the multi-output nature of the production 
processes employed by Irish dairy farms (Newman and Matthews 2006):  

  (1) 

 where the input and output vectors,  and  are implicitly defined as functions 
of time, . The output distance function is measuring the distance of a producer to the 
boundary of the production possibilities set by determining the minimum amount, , by 
which the output vector should be deflated to reach this boundary. The combinations of ,  
and  for which the value of the distance function is equal to one define the boundary of the 
production possibilities set. Thus, the distance function itself can be used to define technical 
efficiency as a function of its arguments:  

  (2) 

Do(x, y, t) = min{θ : y
θ ∈ productionpossibilitiessetinperiodt}
x ∈ ℝN y ∈ ℝM

t
θ ≤ 1

x y
t

Do(y, x, t) = TE



The distance function itself is defined as an implicit function of observable quantities. 
Following Coelli and Perelman (1999), we impose the linear homogeneity of degree one in 
outputs, taking the natural logarithm of both sides of the resulting expression, rearranging and 
appending an error term we obtain:  

  (3) 

 where  is the amount of normalizing output for farm  in period ,  is a linear error term 
that accounts for statistical noise, assumed to be normally distributed with mean zero and 
variance , and  is the one sided technical inefficiency term for the same 
observation. 

Denoting the dependent variable in (3) by  and using a specification for the logarithm of the 
distance function that is linear in the parameters, the following empirical counterpart to the 
output distance function is obtained:  

              (4) 
 where  is minus the logarithm of the normalizing output and  is a vector of covariates 
(functions of the arguments of ) and  is a vector of parameters to be estimated. Given 
that the normalising output is subtracted from the left side of the equation, then the 
parameters associated with outputs should be positive (ceteris paribus, increasing the amount 
of an output brings the farm closer to the frontier), while the parameters associated with 
inputs negative (ceteris paribus, increasing the amount of an input moves the farm away from 
the frontier). The distance function is specified as translog. 

We use a a multivariate normal densities for  with means equal to zeros, while the prior 
covariance matrices, which diagonal elements equal 1000. Inverse gamma distribution is used 
for  with shape and scale hyper-parameters equal to 0.001 and 0.001. Model specification 
is complete once a distributional assumption is imposed on the inefficiency term in (4). We 
use three different distributional assumptions for the inefficiency term: 1) exponential, 2) 
half-normal, 3) generalised gamma, and 4) a mixture of two components of generalized 
gamma form. 

3.2  Half-normal and exponential inefficiency assumptions 
 Exponential inefficiency model:  and  where  = 1, 

, where  is the prior median efficiency and equals 0.875. Half-normal 
inefficiency model:  and  where , , 
following van den Broeck et al. (1994). 

3.3  Generalized gamma inefficiency model 
 The generalized gamma distribution (Stacy 1962), which is generated by assuming a gamma 
distribution for powers of the inefficiency  following Griffin and Steel (2008):  

  (5) 

−logym
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yit
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i
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ξ
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ui ∼ N+(0,σ2
u ) σ−2

u ∼ G (αu, bu) au = 1 bu = 1/37.5

ui
uc

i ∼ Gamma(ϕ, λ)



where  denotes a gamma distribution with shape parameter  and precision parameter 
b (i.e. with mean ) and the the following inefficiency density function:  

  (6) 

This three-parameter family includes a variety of simpler distributions, i.e. when  this 
simplifies to the gamma distribution, the exponential distribution when , the 
Weibull distribution for  and the half-normal distribution for , . A class 
of “half-exponential power distributions”, i.e. univariate versions of exponential power 
distributions (Chapter 3, Box and G. C. 1973) truncated to the positive real line can be 
generated if . By estimating a stochastic frontier model with a generalized gamma 
distribution, one can test all of these distributions (Hajargasht 2015). The distribution in (6) 
has a bellshaped density function for  and the reverse J-shaped otherwise. The ability 
to generate negative skewness with this distribution contrasts with all the commonly used 
inefficiency distributions (Griffin and Steel 2008).  3

Particular attention must be paid to the choice of the priors on the parameters  in 
order to have meaningful posterior inference. According to the elicitation procedure of 
Griffin and Steel (2008), the following priors are used:   

    •  ) 

    •  where  denotes the inverted gamma distribution with 
mode  (Bernardo and Smith 1994) 

    •   

 In the generalized gamma inefficiency distribution,  and  (Griffin and 
Steel 2008). 

The Deviance Information Criterion (DIC) is used for a comparison between the three 
distribution inefficiency models (Spiegelhalter et al. 2002). The DIC is a within sample 
measure of fit that can be used for comparison between SFA that are estimated in Bayesian 
inference (Griffin and Steel 2007). Defining the deviance of a model with parameters  as 

, where  are the data, then  where  is the expected 
deviance and  is a complexity term such that , where  is the mean of the 
posterior parameter distribution. 

3.4  Mixture of two components generalized gamma inefficiency model 
 The two groups could be associated with differences in how effectively a basically common 
technology is being used, for example by using different management structures: mainstream 

G (α, b) α
α /b

p(ui |c, ϕ, λ) =
cϕ

Γ(ϕ)
ucϕ−1

i exp( − uc
i λ)

c = 1
ϕ = c = 1

ϕ = 1 c = 2 ϕ = 1/2

ϕ = 1
c

cϕ > 1

(c, ϕ, λ)

λ ∼ Ga(ϕ, ( − logr*)c

ψ = ϕc ∼ Ig(d1, d1 + 1) Ig(a , b)
b /(a + 1)

c ∼ Ig(d2, d2 + 1)

r*j = 0.8 d1 = d2 = 3

θ
D(θ ) = − 2log f (y |θ ) y DIC = D̄ + pD D

pD pD = D̄ − D(θ̄ ) θ̄

  Carree (2002) showed that the estimated residuals of a stochastic production frontier are positively skewed in many empirical cases, while 3
all the usually adopted inefficiency distributions induce negative skewness of the “composed error term” (inefficiency and error terms). See 
Bonanno et al. (2017) and Cho and Schmidt (2020) for a discussion on wrong skewness issue in stochastic frontier analysis. The flexible 
inefficiency distribution in this paper, can accommodate both positive and negative skewness in the estimated residuals.



farms may constitute the largest group of the Irish dairy sector, while there are a few very 
efficient firms. The mixture could be extended to three components, i.e. assume that there are 
a few laggard farms, but these would be forced out of the market due to competition (Skevas 
et al. 2017). 

Denote by  the generalized gamma density function in eq. (6), the mixed 
inefficiency distribution is defined by 

  (7) 

where  is a weight parameter and , and the prior median 
efficiency for the component with very efficient farms is , and  
(Griffin and Steel 2008). For the component with the mainstream farms,  and 

 (Griffin and Steel 2008). Furthermore, instead of imposing labelling 
restrictions in order to solve the identification problem associated with mixture modelling 
(e.g. O’ Donnell and Griffiths 2006), we use a more structural approach following Griffin and 
Steel (2008). Specifically, we denote by  the -dimensional vector which groups the 
characteristics of the -th firm, and we model the weight  as ), where  
is a monotonic function on (0,1) and  a parameter vector. A convenient choice for  is the 
cumulative distribution function of a standard normal distribution, leading to a probit model 
for the weights: 

  (8) 

where  is a vector of parameters to be estimated and  is a vector of firm specific time 
invariant covariates, and . 

4  Data 
 The data used in this study are taken from the Teagasc’s National Farm Survey (NFS) and 
cover a sample of Irish dairy farms and the period between 2008 and 2017. The dataset 
consists of a total of 3740 observations on 486 specialist dairy farms. Farms are usually 
reported between 1 and 10 years. We choose to keep only data from farms that are observed 
for at least five consecutive years. The reason is to ensure there is a sufficient number of 
observations per farm for estimating farm specific inefficiency scores. The final dataset then 
consists of an unbalanced panel of 2323 observations from 277 farms, in which farms remain 
in the sample for an average of 8.7 years. 

Two categories of outputs are defined. The main output , which is measured as the total 
revenue from milk production. The second output  consists of aggregate revenues from 
beef, pigmeat, other meat products, crops and other minor commodities. Four input 
categories are defined. The capital  comprises of the value of machinery and buildings 
and total livestock value. Labor  is measured in total labour units working on the farm. 
Land  is the utilized agricultural area, measured in hectares . Materials  is 
measured in expenditures of the following subcategories: seeds and plants, fertilizers, crop 
protection, energy, contract work and purchased feed (includes purchased concentrates and 

pGG( . |c, ϕ, λ)

p(ui |w, θ ) = wpGG(ui |c1, ϕ1, λ1) + (1 − w)pGG(ui |c2, ϕ2, λ2)

w ∈ [0,1] θ = (c1, ϕ1, λ1, c2, ϕ2, λ2)
r* = 0.975 d1 = d2 = 3

r* = 0.8
d1 = d2 = 10

νi g
i w(νi) w(νi) = f (ν′ γ f ( . )

γ f ( . )

w(νi) = Φ(ν′ γ)

γ ν′ 
γ ∼ N(0,1)

(y1)
(y2)

(K )
(L)

(A) (A) (M )



bulky feed), upkeep of buildings, machinery hire and upkeep of land. We also account for 
three variables related to farm characteristics, which are related to three dimensions of 
sustainability, i.e. economic, social and environmental; each variable could be linked 
implicitly with one or more sustainability dimensions.  

The first is the stocking density and is measured as the ratio of livestock units to hectare. 
Previous studies have suggested that increased stocking rate in pasture-based systems is 
linked to higher chemical fertiliser use, higher dependence on supplementary feed 
importation, larger nutrient surpluses and lower capacity of nutrient use, that result in higher 
environmental pressures (Di and Cameron 2002; Kelly et al. 2020). The environmental 
pressures can be reduced, if additional pasture is utilized, for given levels of feed and 
fertilizer use (Di and Cameron 2002; Kelly et al. 2020).  

The second variable is the ratio of purchased concentrate feeds (kg) to milk output (litres). 
This variable was selected since the agricultural sector’s sector greenhouse gas (GHG) 
emissions between 2003 and 2012 accounted for about 20% of total emissions caused by 
human activities; out of which, 70% of total GHGs from agriculture, forestry, and other land 
uses stem from the livestock sector (Tubiello et al. 2013). GHGs are a byproduct caused by 
the enteric fermentation of the ruminant livestock (Balaine et al. 2020; Läpple et al. 2022). 

The third variable is measured as the ratio of total labour units to cows measured. This is to 
the working balance and overall social life of farmers (Buckley and Donnellan 2020). The 
variable can be seen also as an indicator of animal welfare. Specifically, similar to other EU 
dairy farms, family members mostly contribute to production (Ang and Oude-Lansink 2017). 
Given then the sluggishness of acquiring more workers and the projected increase number in 
livestock, animal welfare issues may occur. 

We do not have available more variables which could provide a more accurate measurement 
of sustainability dimensions, such as GHG emissions, readily available within the standard 
dataset. 

A Törnqvist index was constructed for each aggregate variable measured in monetary terms, 
using price indexes from EUROSTAT with 2010 as a base year. Then, each aggregate 
variable was deflated accordingly. Summary statistics for the utilized dataset are presented in 
Table 1. 

  
Table  1:  

Summary Statistics, Irish dairy farms 2008-2017 
  

  Variable   Mean  Std. Dev  Min  Max 

 Milk (€1000 )  115.41  79.39  1.13  623.69 

Other Output 
(€1000 ) 

 50.33  37.70  1.18  424.06 



  
  

  

5  Results 
5.1  Half-Normal, Exponential and Generalized Gamma inefficiency 

model results 
 The results are obtained from data augmentation techniques with 5 Markov Chain Monte 
Carlo (MCMC) chains. In each chain, 50,000 iterations were disregarded in order to reduce 
the influence of the initial values, and another 150,000 draws, 1 out of every 10 was retained 
to remove any potential autocorrelation. Table 2 presents the posterior summaries of key 
parameters at 95% credible interval of the SFA models with Half-Normal (HN), Exponential 
(Exp) and the Generalized Gamma (GG) inefficiency distributions. 

  
Table  2:  

Posterior means of key parameters at 95% credible interval with the HN, Exp and GG 
  

Labor (Units)  1.59  0.65  0.5  6.93 

Capital (€1000 )  252.91  178.37  8.80  1066.93 

Materials (€1000 )  69.10  47.89  4.67  383.43 

Area (Ha)  54.01  28.97  3.7  222.61 

Density (Cows per 
hectare) 

 1.88  0.51  0.57  3.54 

Feeds per milk (kg/
l) 

 0.26  0.11  0.08  0.95 

Workload per cow 
(hours) 

 28.01  18.51  2.80  145.84 

  Parameter   HN  Exp  GG 

 -0.334*  -0.340*  -0.301* 

 -0.041*  -0.039*  -0.048* 

 -0.205*  -0.206*  -0.210* 

 -0.391*  -0.394*  -0.383* 

 0.208*  0.207*  0.209* 

 -0.018*  -0.018*  -0.019* 

RTS  0.971  0.979  0.942 
 0.15  -  -   σ2

u

 εL

 εY2

 εt

 εM

  εK

 εA



  
  
  
The data for inputs and outputs are normalized by their geometric mean allowing us to 
interpret the parameters associated with the first-order terms directly as distance elasticities, 
evaluated at the geometric mean of the data. The estimated distance elasticity  in the HN 
model shows that if the farmer produces 1% more of other output, ceteris paribus, then the 
value of the distance function is increased by 0.20%, moving the farmer closer to the frontier. 
The distance elasticity  in the Exp shows that if a farmer increases  by 1% then the value 
of the farm’s average distance function is decreased by 0.03%.  

The GG has the lowest DIC value which indicates that it fits the data better compared to the 
half-normal and exponential model stochastic frontier model. This due to flexibility of the 
GG that allows for multimodality and various skewness in the efficiency behaviour: Irish 
dairy farmers have wider sustainability goals, and thus, the flexibility of the GG fits better 
their efficiency behaviour. This is evident also by the mean posteriors of  and , which 
differ from values that would correspond to an Exp, HN or Weibull model, as explained in 
the methodology section. 

There are differences between the three models. In particular, the output elasticities of the 
three models are similar but differ slightly with respect to  and . The lower estimated  
in the the flexible GG model than in the Exp and HN models, indicates that farmers make 
more production mistakes utilizing capital and livestock when the model is able to capture 
better the diverse efficiency behaviour (e.g. various sustainability goals) of farmers. 
Specifically, Irish dairy farmers may make production mistakes when they try to increase the 
feed requirements, given the fixed land, without relying in external inputs such as feeds etc. 
This finding is similar to Sidhoum et al. (2022) who suggest that farmers may be more 
inefficient when try to combine environmental and productivity objectives. 

The  in GG suggests that the Exp and HN underestimates the contribution of labour to 
production. This is in line with the findings Hansson et al. (2018), suggesting that a part of 
inefficiency is rational. Specifically, labour activities in the Irish dairy farming are possibly 
linked to achieve wider sustainability goals, and thus has higher impact on production in the 
inefficiency GG model that in the Exp and HN. 

 0.012  0.012  0.12 

 -  2.98  - 

 -  -  2.91 

 -  -  1.64 

 -  -  1.91 

Avg. TE  0.70  0.72  0.43 
DIC  -2992.9  -2614.3  -3285.7 
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The most striking difference between the three models are related to the average efficiency 
scores. Specifically, the average efficiency in the GG is much lower than in the HN and Exp. 
The Figure 1 shows the kernel density of the efficiency scores at the farm level. As previous 
literature predicted, it can be seen that the restrictive Exp and HN distribution tend to produce 
a a left skewed cluster of efficiency scores (Griffin and Steel 2004; Griffin and Steel 2008). 
This drives the difference in the average efficiency score between the models.  4

  
Figure  1: Kernel density of the farm level specific efficiency scores for Exponential (Exp), 

Half-Normal (HN), and Generalized Gamma (GG) inefficiency models 
   

5.2  Generalized Gamma mixture results 
 The results from the generalized gamma mixture with two components are presented in 
Table 3. The posterior probability  is 0.27 which indicates that the data favour the mixture 
model over the GG model. The differences of between  and  are also 
interesting. In particular,  is 1.1 which is very close to 1, i.e. the inefficiency distribution of 
the first component assimilates an exponential distribution. Nevertheless, Exp, HN (or 
Weibull) distribution would not fit well the efficiency behavior of the second component 
(according to the estimated ). The estimated average efficiencies between GG and 
GG2C do not present any differences. 

w
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  The inefficiency specificaRon is , which implies that inefficiency is Rme invariant. This assumpRon can be relaxed by using its 4

generalizaRon, i.e. the BaXese and Coelli (1992) Rme varying model.
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Table  3:  

Posterior means and credible intervals of key parameters at 95% credible interval 
  

  
  

  
There are some discrepancies in the estimated input elasticities between the GG2C and the 
GG. Specifically, the elasticities  and  are lower and higher respectively in GG2C 
compared to GG. These discrepancies are due to the fact that GG2C incorporates more 
information regarding farmers’ behaviour, i.e. distinguishes for two components; and the 
allocation of farmers to those depends on the three selected variables related to their 
production characteristics. Hence, the difference in the elasticities reinforces the view that a 
more flexible inefficiency distribution is able to capture more accurately the contribution of 
particular inputs to production, as discussed in the previous subsection. Table 4 below shows 
the estimated coefficients for the explanatory variables in the weight of GG2C.  5

  Parameter  Mean   Cred. Interval  

 -0.267*  -0.266*  -0.224* 

 -0.054*  -0.065*  -0.201* 

 -0.264*  -0.186*  -0.224* 

 -0.393*  -0.543*  -0.412* 

 0.211*  0.254*  0.286* 

 -0.018*  -0.015*  -0.017* 

RTS  0.97  1.06  1.06 
 0.012  0.024  0.11 

 1.10  -  - 

 0.99  -  - 

 1.23  -  - 

 3.67  -  - 

 2.06  -  - 

 1.90  -  - 

 0.27  -  - 

Avg. TE  0.48   
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 We tried to include more sustainability indicators of farm level performance as explanatory variables in the weight of GG2C; but we 5

encountered convergence issues possibly due to the correlaRon among the explanatory variables. 



  
Table  4:  

Coefficients for explanatory variables in the weight of GG2C 
  

  
  

The negative sign of the stocking density elasticity shows farmers with higher stocking 
density are more likely to be in the less efficient group. This finding is in contrast with the 
findings of other studies that focused on dairy sectors in other countries (e.g. Abdulai and 
Tietje 2007; Alvarez and del Corral 2010; Skevas et al. 2017; Ma et al. 2019). The grass 
based feed system though in the Irish dairy sector is the main source of competitiveness. 
Given the low land mobility, farmers at higher stocking density may face more difficulties in 
achieving the necessary feeding requirements for producing more milk output per cow in a 
sustainable manner, i.e. without increasing purchased feeds, the use of fertilisers etc. This 
results in higher technical inefficiency. Previous empirical studies have also found that higher 
stocking rates have a negative effect on technical efficiency at the Irish dairy farm level 
(Carroll et al. 2008; Kelly et al. 2013; Bradfield et al. 2021). 

We also report a positive sign for the amount of concentrate feeds per milk output. In the 
same manner, this shows that farmers who use more purchased feeds per cow are more likely 
to be in the more efficient group. This is because farmers who (perhaps are more profit 
oriented) and rely more on purchased feeds in order to achieve the feeding requirements, are 
more efficient (e.g. Sidhoum et al. 2022). 

Finally, farmers who allocate more labour per cow are also more likely to be in the more 
efficient group. This is similar to Bradfield et al. (2021), who found that higher hired to 
family labour ratio has a negative effect on technical inefficiency in the Irish dairy sector. 
Dakpo et al. (2021a) found that the share of hired labour in total labour has a negative impact 
for French dairy farms in a pooled model, but insignificant in a LCM. The share share of 
hired labor is positively associated with efficiency in French dairy farming when selection 
bias is accounted for (Dakpo et al. 2021b). 

6  Conclusions 
This paper aims to understand the possible trade-offs between the economic, social and 
environmental sustainability dimensions, which arise from the more efficient use of inputs in 

  Parameter  Mean  Cred. Interv.

 Stocking Density  -1.707*  [-2.402 ,    -0.905]

Feeds per milk  0.987*  [0.485  ,    1.427]

Workload per cow  0.073*  [0.026  ,    0.155] 



the Irish dairy production. Instead of using a Latent Class Model (LCM), we use generalized 
gamma mixture of two components (GG2C) for the inefficiency term. GG2C does not require 
the estimation of separate frontiers such as in in the Latent Class Model (LCM). More 
importantly, it can accommodate for possible skewness and multimodality of the data, which 
may arise from the diverse sustainability goals of dairy farmers. For instance, Hansson et al. 
(2018) showed that Swedish dairy farming, part of inefficiency is linked to rational 
production decisions, i.e. farmers have wider goals than productivity improvements. In this 
regard, GG2C is more flexible for describing the farmers’ efficiency behaviour compared to 
the Exponential (Exp) and Half-Normal (HN) distributions. 

We first estimate an Exp, HN and a Generalized Gamma (GG) inefficiency model to test the 
fitness in our data. We found that Exp and HN frontier models overestimate technical 
efficiency compared to the GG. It is also interesting that the elasticity with respect to capital 
(which consists of capital and livestock value) and labour is lower and higher respectively in 
the GG. These differences are attributed to the flexibility of GG that captures possible 
multimodality and various skewness. We further estimated the GG2 with the two 
components, mainstream and very efficient group of farmers. We allow the allocation of 
farmers to these two groups to be dependant on their stocking rate, feeds per milk output and 
labour per cow. We found that farmers who use more feeds per milk output and allocate more 
labour per cow are more likely to be in the very efficient component. 

The results of the paper highlight again the importance of the grass based feed system to the 
Irish dairy sector. Advisors should continue to promote innovations that will enhance farmers 
to use more efficiently the pasture based system and be less reliant to harmful inputs such as 
feeds. Regarding the results with respect to labour per cow: Bradfield et al. (2021) argue that 
potential expansion beyond current family labour would overall improve rural employment. 
We further argue that the adoption of innovations at the farm level is essential for reducing 
the demand for labour. In this way, farmers would have a better working-life balance, 
particularly amid the projected increase in the national dairy herd. 
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