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Abstract 

Reducing nitrogen losses and the associated negative impact on the environment is a major 

challenge in agricultural production. Precision agricultural technologies are supposed to help 

solving this challenge. Since the adoption rate of such technologies in small-scale farming 

systems is still rather low, additional policy measures are needed to support their adoption. In 

this study, we investigate the efficiency of such measures using an agent-based modelling 

framework that combines cognitive and dispositional farmers’ characteristics with a bio-

economic optimization model. We simulate the effect of different policies on the adoption 

decisions of farmers in a Swiss case study. We use census, choice experiment and survey data 

from Swiss crop farmers to calibrate the agent-based model. Our results help to better assess 

the impact of different policy measures on the adoption decisions regarding site-specific 

fertilization and to inform policy makers on the most efficient measures. 
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Introduction 

 

Improvements in nitrogen use efficiency and the associated reduction of negative 

environmental impacts due to nitrogen losses, is one of the main challenges in agricultural 

production. Precision agriculture technologies are expected to help address this challenge by 

providing timely, detailed, and site-specific production information (Schimmelpfennig and 

Ebel, 2016). Although technologies for site-specific nitrogen application have been available 

on the market for several years, their application rate in small-scale European farm systems is 

lower than expected (e.g., Finger et al., 2019; Lowenberg-DeBoer and Erickson, 2019; Groher 

et al., 2020; Späti et al., 2022). Besides the low profitability, behavioral factors might be an 

explanation for the low adoption rate (Barnes et al., 2019a, b). Farmers’ individual cognitive, 

social, and dispositional factors also affect the uptake of sustainable farming technologies 

(Dessart et al., 2019). This is of specific importance if policy measures are implemented to 

incentivize the adoption of site-specific nitrogen fertilization technologies and thus increase 

nitrogen use efficiency in agriculture. 

In this study, we simulate farmers’ adoption decisions regarding precision agricultural 

technologies using an agent-based modelling approach to quantify the environmental and 

economic effect of policy measures designed to support the adoption of site-specific nitrogen 

fertilization technologies. More specifically, we assess and compare how a nitrogen tax and 

different forms of subsidies (i.e., for nitrogen reduction, for technology use and an area 

payment) influence adoption decisions for variable rate technologies taking into account 

farmers’ individual social, cognitive and dispositional factors. To this end, we combine survey, 

choice experiment and census data of 418 farmers (Späti et al., 2022) with a bio-economic 

model (Späti et al., 2021) in an agent-based modelling framework (Huber et al., 2021). This 

allows us to simulate the emerging efficiency and effectiveness of various policy measures 

based on the adoption decision of heterogeneous farmers in small-scaled farming systems. 

Previous research has addressed the adoption of precision agriculture technologies in recent 

years (e.g., Aubert et al., 2012; Barnes et al., 2019a , b; Blasch et al., 2021; Schimmelpfennig, 

2016; Tey and Bindal, 2012). However, such farm-level studies often do not consider the 

individual decision-making of heterogeneous farmers. Agent-based models (ABMs) allow to 

capture the heterogeneity of actors and to model the interactions between agents (Zhang & 

Vorobeychik, 2019). They therefore offer a way to contribute to a better understanding of 

adoption decisions and the diffusion of such technologies. Agent-based modeling approaches 

have been increasingly used in recent years for conducting ex-post and ex-ante evaluations of 

agricultural policies (Huber et al., 2018). However, little research has been done on the impact 

of potential policy measures to increase nitrogen use efficiency considering the heterogeneity 

of farm and farmers’ characteristics (e.g., cognitive, social, and dispositional factors). 

Additionally, current ABMs are not well linked to empirical evidence on the adoption and 

diffusion of precision farming at the farm level and thus do not have a sufficient empirical basis 

(Shang et al., 2021).  

In this paper, we aim to fill this gap by combining empirical census, survey, and choice 

experiment data with an agent-based modelling approach for an ex-ante assessment of different 

policy measures (i.e., tax on nitrogen, subsidy technology, or direct payment) aiming to 

increase nitrogen use efficiency in small-scaled farming systems, focussing on wheat 

production systems in Switzerland. We simulate the effect of farmers individual and 

heterogeneous adoption decisions of site-specific nitrogen fertilization technologies in wheat 

production under different policy settings and quantify the total nitrogen reduction due to the 

adoption of the technologies as well as the efficiency of the policy measure (i.e., Fr./kg N 

saved). The considered policy scenarios include 1) a tax on nitrogen use (CHF/kg), 2) payment 

for reduced nitrogen (CHF/kg), 3) fixed payment (subsidy) for the application of the 



technology (CHF/farm) and 4) Subsidy for each ha, which is managed with the technology 

(CHF/ha). Our simulation set up is structured in four steps. First, we calculate the change in 

gross margins for wheat production on each farm for four different technologies that provide 

information on nitrogen availability with increasing spatial resolutions (i.e., section control, 

satellite imagery, handheld sensor, and drone). The calculations are based on a bio-economic 

model (Späti et al., 2021) calibrated to our sample using farm census data. Secondly, we 

calculate gross margins on each farm in the four policy scenarios and with varying spatial 

heterogeneity of the underlying fields. Thirdly, we use the agent-based modelling framework 

FARMIND (Huber et al., 2022) to simulate the farmers’ individual adoption decision in these 

scenarios taking into account farmers’ willingness to pay and willingness to accept these 

technologies. More specifically, we exploit the findings from a choice experiment which shows 

that farmers’ request for compensation when reducing nitrogen input is higher than their 

willingness to pay for the same amount of nitrogen input. Furthermore, we also consider 

farmers’ risk preferences, their preferences for technologies and attitudes towards environment, 

and production and their tendency for socially oriented behaviour i.e., the observation of their 

peers and the imitation of their successful adaptation decisions. Fourthly, we simulate the 

adoption decisions of each individual farmer with increasing tax and subsidy levels with the 

goal to reduce the overall nitrogen input of all farms to 10, 15 and 20%. Since, within the 

framework of the future development of Swiss agricultural policy, the loss of nitrogen from 

Swiss agriculture shall be reduced by 20% until 2030 (BLW, 2021). This allows to calculate 

the effectiveness of the different nitrogen reduction policies and to compare their efficiency.  

Our results show given the differences in the perceived costs and benefits of the four 

technologies and the heterogenous characteristics of the farmers, a tax scheme might be the 

most efficient policy to reduce nitrogen input in our case study region. Subsidies for technology 

uptake or per area have a much lower efficiency than policy schemes focusing on nitrogen 

input directly. Our analysis adds to the existing literature by showing how individual 

behavioural components influence the adoption of precision agriculture technologies and to 

what extent this affects the efficiency of different policy incentives. 

The remainder of this paper is organized as follows. First, we introduce the case study and 

provide an overview of the different variable-rate technologies included in our analysis. We 

then present the methodology used for our analysis, followed by some results and conclusions.  

 

Background 

The case study region covers the two Cantons of Solothurn and Bern in Switzerland. We use 

data from a survey from 418 crop farmers (Späti et al., 2022). The data were collected using a 

split sample approach, investigating willingness to pay in one sample and willingness to accept 

in the other sample. We used a factor analysis to assign to each farmer from one sample a 

similar one from the second sample, thus obtaining an agent set with a specific willingness to 

pay and willingness to accept for each agent. This resulted in a set of 136 agents used for the 

simulation.  

Variable rate technologies cover a whole range of technologies that can be used for site-specific 

nitrogen application. An important step in site-specific nitrogen fertilization is data collection. 

These data can be collected in a variety of ways, including soil sampling, satellite data, nitrogen 

sensors, or drone imagery, and vary in spatial resolution (Späti et al., 2021). In addition, the 

cost of the technologies are also different. For instance, satellite images are in some cases 

available for free or cost only a few francs, whereas nitrogen sensors cost up to several tens of 

thousands of francs if one wants to acquire the technology oneself.  

 

 

 



Methodology 

We here use the agent-based modelling framework FARMIND (Huber et al., 2021). The 

purpose of this modelling approach is to simulate the adoption of precision agricultural 

technologies on Swiss farms. The model simulates the effect of different policy incentives on 

the adoption decision of variable rate technologies in wheat production considering 

heterogenous cognitive, social, and dispositional factors across individual farmers. Thereby, 

the model uses information on farmers’ stated willingness to pay and willingness to accept 

from a choice experiment to simulate the effect of differently designed policy incentives (i.e., 

tax on nitrogen, subsidy per kg of reduced nitrogen, subsidy for a specific technology and area-

based subsidy) on the adoption decision. The model also considers empirical data collected via 

surveys on farmers technology preferences, risk preferences and attitudes towards the 

environment in combination with the impact of policy measures on gross margins in wheat 

production. The emerging phenomena are a) the total amount of nitrogen reduced by the farm 

individual adoption of variable rate technologies and b) the change in total gross margins for 

the individual farm but also the whole farm community. Thus, the model allows to quantify the 

economic and environmental effect of the adoption of variable rate technologies in wheat 

production on Swiss farms.  

For the calculation of the gross margins, which are then used for FARMIND, we use a bio-

economic simulation model (Späti et al., 2021). Using this model, we are able to take into 

account varying spatial resolutions of different sensing approaches for site-specific nitrogen 

fertilisation, environmental heterogeneity at the field level, as well as market and policy 

conditions for calculating individual gross margins for each agent in the agent-based model. 

To simulate farmers’ decision-making, we focus on the farmers’ individual perception of cost 

and benefits of variable rate technologies and link them to risk parameters, social orientation, 

and preferences for technologies. These aspects are combined in FARMIND using the so-called 

CONSUMAT framework, which links the different theoretical concepts into a structured 

sequence of modelling steps (Schaat et al., 2017). The parametrization of the model is based 

on the following empirical data (see Table 1): i) willingness to pay and willingness to adopt of 

variable rate technologies based on choice experimental data; ii) Risk preference parameters 

derived from farmers self-assessment of their risk behaviour; iii) Stated preferences for 

technologies and attitudes towards environment, and production; iii) Information on farmers 

social network (self-assessment); iv) census data to calculate farm individual benefits and costs 

from using variable rate technologies. 

Table 1. State variables and parameters 

Category State variable / parameters Abbreviation Source for 

initialization 

(1) Farm and 

technology 

characteristics* 

Adopted variable rate technology 𝐴 Späti et al., 2022 

 N application under the 

corresponding technology 𝐴 (kg) 
𝑦𝐴𝑡 Based on 

simulation in Sub-

model (Späti et al., 

2021) 
 Gross margin with adopted 

variable rate technology (1000 

CHF) 

𝑥𝐴𝑡 

 Wheat area in 2019 (ha per farm) 𝑎𝑟𝑒𝑎 Census data 

(2) WTP /WTA Farmer’s perception of costs and 

benefits of variable rate 

technologies 

𝑊𝑇𝑃𝐴 / 

𝑊𝑇𝐴𝐴 

Späti et al., 2022 



(3) Personal 

characteristics** 

Risk preferences (risk averse, risk 

neutral, risk loving) based on 

cumulative prospect theory 

λ, α+/- ϕ+/- Späti et al., 2022 

Tolerance level for activity 

dissimilarity to determine 

information seeking behavior 

𝑑𝑖
𝑡𝑜𝑙 

Preference for technology PA 

Reference gross margin to 

calculate satisfaction. 
𝑉𝑖
𝑟𝑒𝑓

 

(4) Social 

network 

Number of peers a farmer is 

linked to (number of ties) 

n Späti et al., 2022 

(5) Outcome 

variables 

Prospect value 𝑉𝑖 Model endogenous 

Agents’ activity dissimilarity 𝑑𝑖 
Nitrogen use (in simulation run t) 𝑦𝑡 
Gross margin (in simulation run t) 𝑥𝑡 

 

FARMIND includes a two-tiered decision-making mechanism for managing farm resources. 

In a first step, agents choose a decision strategy. The model includes four behavioural 

strategies: repetition, optimization, imitation, and opt-out. In a second step, farm agents chose 

their actual pro-duction decision i.e., the adoption of variable rate technologies based on the 

options provided in the corresponding strategy. This two-tiered decision-making is 

implemented in three coding steps. 

First, FARMIND calculates the distribution of gross margins over the farmers’ memory length 

and the gross margins in the initialization year. On this basis, the model calculates the prospect 

value of the agent’s gross margin considering the empirical based risk preferences. In addition, 

the model calculates the agents’ dissimilarity to the other agents in the network with respect to 

technologies used in wheat production. Prospect value and dissimilarity are then used to 

calculate a strategy of each individual farmer i.e., repetition, imitation, optimization or opt-out 

(the latter would be equivalent to the status quo). We here use a farmer typology to 

parameterize the agents’ individual characteristics. The typology is empirically derived from a 

farm survey that gathered information on farmers’ personal characteristics (i.e., risk 

parameters, tolerance for being dissimilar to other farmers and environmental attitudes). This 

implies that each agent belongs to a certain farmer type with the same individual 

parameterization (for details see Section “Initialization of simulation”). Secondly, variable rate 

technologies are ranked according to the personal preferences of the farmer (also identified in 

the survey). A fuzzy logic algorithm identifies a sub-set of maximum two strictly preferred 

activities in the different strategies. Thirdly, based on the transferred choice sets, FARMIND 

chooses those technologies that maximize nitrogen reduction given a gross margin level (at 

least greater than the gross margin without adoption of variable rate technologies). The gross 

margins vary across scenarios (i.e., the type of policy implemented) and with the individual 

perception of costs and benefits of the corresponding technology derived from WTP and WTA 

estimates. The results from the adoption decision (gross margin and technology adoption) are 

then again transferred to the FARMIND strategic decision to update technology use and gross 

margin distribution of the agents.  

For our analysis, we consider four different measures to support the adoption of site-specific 

nitrogen fertilisation. The first two measures relate directly to nitrogen and include a tax on 

nitrogen and a payment for each kilogram of nitrogen reduced. In the third measure, farmers 

receive a fixed payment if they adopt the technology. The fourth measure involves subsidising 

the area farmed with the technology.  

 



Results 

Table 2 shows the results for the N reduction target of 10% and results for the same policy 

measures under different field conditions. In the absence of supporting policy measures, a 

nitrogen reduction of 4% could be achieved. By applying a tax of 0.6 CHF per kg of nitrogen, 

a reduction of 10% is achieved. Likewise, this can be reached by a payment of 7 CHF per saved 

kg nitrogen, a lump sum payment of 2500 CHF for the application of the technology or a 

subsidy of 600 CHF per ha managed with the technology.  

Table 2: Results for the 10% nitrogen reduction target and for the same measures under changes in 

heterogeneity with respect to field conditions. 

10% reduction target 

Scenario No 

Policy 

Tax N Payment Technology 

Subsidy 

Area Subsidy 

Measure to 

achieve 10% 

reduction 

- 0.6 CHF 

increase 

of N price  

7 CHF 

payment per 

reduced kg 

N 

2500 CHF 

payment for tech 

adoption 

600 CHF per ha 

managed with 

technology 

N Reduction 

[%] 

4% 10% 10% 10% 10% 

CHF per 

reduced kg N 

0 4.35 5.95 26.15 37.10 

Reduced heterogeneity in soil type characteristics 

N Reduction 

[%] 

2.5% 7% 6% 6.5% 6% 

CHF per 

reduced kg N 

0 5.05 6.30 39.35 52.45 

Reduced heterogeneity in soil types 

N Reduction 

[%] 

1.5% 4% 4% 4.5% 4.5% 

CHF per 

reduced kg N 

0 5.60 6.20 33.40 51.85 

Change in the distribution of soil types (less patches) 

N Reduction 

[%] 

3% 9% 8% 8.5% 9% 

CHF per 

reduced kg N 

0 5.65 7.90 24.75 33.25 

 

Considering the efficiency of the respective policy measure, it seems that the two measures 

directly related to nitrogen use, such as taxation and payment for N reduction, are the most 

cost-efficient measures. Our first results indicate that the economic benefit, from the 

application of the technology and the associated reduction in nitrogen use highly depend on the 

underlying field heterogeneity. It seems that a reduction of heterogeneity in soil fertility 

conditions makes the policy measures less effective. 

 

Conclusion 

Understanding the factors influencing farmers' adoption decisions regarding sustainable 

technologies are key for designing effective policy interventions to support the adoption of 

such technologies towards more sustainable agriculture. With our analysis we aim to contribute 

to a better understanding of the factors that influence farmers' decisions to adopt more 



environmentally friendly technologies in small-scale farming systems and which policy 

measures can support the application of site-specific nitrogen fertilization. To this end, we 

combine an agent-based modelling framework FARMIND with empirical survey data and 

simulate the effects of different policy measures on adoption rates. Overall, we find that 

measures directly linked to nitrogen use, such as taxes on nitrogen or a payment for each kg of 

nitrogen reduced, are more cost-effective. Furthermore, the efficiency of the measures strongly 

depends on the heterogeneity of the field conditions.   

The survey data show a very low actual adoption rate. Hence, this makes it difficult to validate 

the model (i.e., to compare it with observed adoption). In addition, there are uncertainties 

related to model parameterization based on survey data. Further sensitivity analyses need to 

provide insights into verification and conceptual validation of the simulation results. In 

addition, there could be a selection bias in the survey data, as farmers who are interested are 

more likely to have participated. Therefore, the results should be considered lower bounds.  

Our results indicate that policy measures to support adoption of site-specific nitrogen 

fertilization should be directly related to nitrogen use. Moreover, the amounts of subsidies 

needed to achieve a 10% nitrogen reduction are relatively high, so it may be necessary to use 

other approaches, such as nudging, in addition to monetary measures. 

Since social networks can also play a role in the diffusion of new technologies, this aspect 

could also be integrated into the analysis.  Further research could thus explore the role of social 

networks in the adoption of precision agriculture technologies in smallholder systems. So far, 

we have not accounted for the observed heterogeneity in field conditions. Since this 

heterogeneity strongly influences the cost-effectiveness of the interventions, it would be very 

valuable to include empirical data on this aspect in the analysis. In addition, technology and 

price developments should also be considered in the analysis, as they might have an important 

effect on costs and benefits.  
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