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Abstract 
This paper investigates the cost-effectiveness of agricultural non-point source (NPS) pollution control 

policies through a biophysical-economic model for the Eden catchment (N-W England). In the context 

of current UK agricultural reforms and recent technological progress in agricultural technology, policy 

recommendations are drawn from a purpose-built biophysical-economic model covering six key NPS 

pollutants (nitrogen and phosphorus to both the river and groundwater, sediment, and carbon 

emissions). The model is characterised by a novel level of biophysical detail in the literature, including 

six farm types, six livestock types, 10 hydrological connectivity levels, five soil types, four slope types, 

45 years of observed weather data, and 25 crops selected from 24 crop rotations. 

Incentive-based fertiliser input taxes are found to be the most cost-effective policy mechanism. 

Notably, the presented results confirm previous findings in the literature of inelastic fertiliser demand. 

Consequently, high levels of taxation are required to achieve NPS pollution abatement. The novel 

assessment of Precision Agricutlure (PA) in the context of a catchment-scale biophysical-economic 

model highlights the synergies in necessary preconditions for PA and spatial targeting to be cost-

effective. Policymakers should ensure sufficient heterogeneity in biophysical characteristics and land 

cover to safeguard successful spatial targeting and PA. 
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1. Introduction 
Over the last three decades, non-point source (NPS) pollution from agriculture has been recognised as 

a key factor in the significant water quality degradation observed in the EU and across the world 

(Spofford, Krupnick and Wood, 1986; Buckley and Carney, 2013; Casado et al., 2019). Consequentially, 

NPS pollution has become a focal concern for agri-environmental policy in Europe and the USA (Hanley, 

Whitby and Simpson, 1999; Claassen and Horan, 2001). To support these policy efforts, economic 

research increasingly investigates efficient and cost-effective NPS pollution control policies in 

agriculture. Research has focussed particularly on biophysical-economic modelling which accounts for 

the interdisciplinary challenges of examining agri-environmental policies. Several studies for example 

examine policy measures to reduce diffuse agricultural nitrogen (N) pollution (e.g. Berntsen et al., 

2003; Belhouchette et al., 2011; Bourgeois, Ben Fradj and Jayet, 2014). The current once-in-a-

generation reform of UK agri-environmental policy following Brexit calls for up-to-date economic 
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evidence on cost-effective policy options to control agricultural NPS pollution. Further, the progressive 

use of information technology in agriculture has influenced yield and pollution outcomes as well as 

extended possibilities on agri-environmental policy. This paper contributes to this need for evidence 

by addressing the following gaps in the literature: (1) assessing Precision Agriculture (PA) and its 

synergies with spatially targeted policies and (2) extending previous work by explicitly considering 

hydrological connectivity levels and modelling a novel combination of crop rotations, weather data, 

soil-, and slope-types in ranking NPS pollution control options. 

 

2. Methods 
2.1. Study catchment 

The catchment analysed is the Eden, located in the Northwest of England. The Eden forms part of the 

demonstration test catchment network run by DEFRA to investigate cost-effective ways to reduce 

diffuse pollution from agriculture (Eden DTC - A Defra Demonstration Test Catchment, 2020). It spans 

2,310 km2 and is characterised by various land covers “with four dominant classes: arable; intensive or 

improved pasture; extensive pasture; and moorland” (Reaney et al., 2011, p. 1021). With an average 

annual rainfall of 2,800 mm, precipitation levels in the Eden catchment are high relative to the English 

mean (EA, 2009). Over the period from January 1959 to April 2021, the mean temperature in the Eden 

was 8.2 °C, including highs of 31.1 °C and lows of -25.4 °C (Met Office, 2012). The location and 

geographic characteristics of the Eden facilitate a wide representation of the conditions observed in 

agricultural production across Northern England and Scotland. With respect to agricultural activity, the 

catchment is livestock intensive and exhibits both upland and lowland farms. In the following, details 

on the catchment-specific biophysical input data are presented.  

2.2. Theoretical model 

This papers’ theoretical structure builds on Baumol and Oates (1988) work, appraising policies based 

on their cost-effectiveness in a second best world as opposed to optimality in a first-best world. 

Formally, the objective of the policymaker is to minimise the cost of achieving a chosen level of 

pollution abatement through the implementation of an agri-environmental policy. This cost is given by 

the difference in the unrestricted catchment gross margin and the catchment gross margin after policy 

implementation (Aftab, Hanley and Baiocchi, 2010), leading to the objective function in equation 1. 

𝑀𝑖𝑛 (Π − Π𝑟,𝑒)   (1) 

Where Π represents catchment gross margin before policy implementation and Π𝑟,𝑒 represents 

restricted catchment gross margin after the policy application for a given level of fertiliser application 

technology 𝑒. Equation 2 demonstrates the mathematical representation of restricted catchment gross 

margin. 

Π𝑟,𝑒 = ∑ ( 𝑌𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑐 − 𝐿𝑓,𝑠,𝑑,ℎ,𝑐  (𝑘𝑓,𝑐,𝑒 + 𝑁𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑁  𝜏𝑁 + 𝑃𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑃 𝜏𝑃))

𝑓,𝑠,𝑑,ℎ,𝑐

 

+ ∑ [𝜋𝑓,𝑙,𝑒 − ∑ (𝐿𝑓,𝑠,𝑑,ℎ,𝑔 (𝑘𝑓,𝑔,𝑒 + 𝑁𝑓,𝑠,𝑑,ℎ,𝑔,𝑒 𝑝𝑁 𝜏𝑁 + 𝑃𝑓,𝑠,𝑑,ℎ,𝑔,𝑒 𝑝𝑃 𝜏𝑃))]
𝑓,𝑠,𝑑,ℎ,𝑔𝑓,𝑙

 

+ ∑ [𝑌𝑓,𝑔,𝑚,𝑒 𝑝𝑔 − 𝑌𝑓,𝑔,𝑏,𝑒(𝑝𝑔 + 𝑘𝑡)]𝑓,𝑔   + 𝐿𝑓,𝑠,𝑑,ℎ,𝑎𝜓𝑎 + 𝑇    (2) 

𝑌𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 is the yield of crop 𝑐 in tonnes grown on the land of farm 𝑓, soil 𝑠, slope 𝑑 and hydrological 

connectivity level ℎ, for a given level of fertiliser application technology 𝑒. Prices are represented by 𝑝 

and as appropriate indexed over sale crops 𝑐, artificial 𝑁 or 𝑃 fertiliser, or forage crops 𝑔.  𝜏𝑁 and 𝜏𝑃 
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represent taxes levied on N and P, respectively.  𝜋𝑙 is the gross margin achieved per livestock head, 

excluding forage costs. 𝐿𝑓,𝑠,𝑑,ℎ,𝑐 , 𝐿𝑓,𝑠,𝑑,ℎ,𝑔 and 𝐿𝑓,𝑠,𝑑,ℎ,𝑎represent the farmland of a particular soil-type, 

slope-type and hydrological connectivity allocated to a sale crop (𝑐), forage crop (𝑔),  and set-aside or 

stocking density reduction (𝑎)  respectively.  𝑘𝑓,𝑐,𝑒 and 𝑘𝑓,𝑔,𝑒 capture variable costs associated with 

growing sale crops and forage crops, respectively, which include the cost of crop protection, seed, and 

plant material as well as labour costs. 𝑁𝑓,𝑠,𝑑,ℎ and 𝑃𝑓,𝑠,𝑑,ℎ are the fertiliser application levels in kg/ha 

of N and P, applied respectively. 𝑌𝑔,𝑚 represents the forage crop yield in tonnes that is sold within the 

catchment while 𝑌𝑔,𝑏 represents the forage crop yield in tonnes bought from within the catchment 

incurring an additional transport cost (𝑘𝑡).  𝜓𝑎 represents payments for set-aside or stocking density 

reduction2, transfer payments for revenue-neutral policies are captured by  𝑇. 

It is assumed that individual farms maximise their gross margin subject to the constraints of their farm 

assets and agronomic production requirements such as feeding needs and labour requirements 

(Schuler and Sattler, 2010; Schönhart et al., 2011; Lungarska and Jayet, 2018). The total gross margin 

is given by subtracting total variable costs (including costs of: fertiliser including taxation, crop 

protection, seed and plant material, animal feed excluding forage, employed labour, and contracted 

PA machinery) from total farm revenue which includes sales from agricutlural products and transfer 

payments (Louhichi et al., 2010, p. 586). 

A farm’s primary asset is its exogenously given land endowment. The land endowment is given in terms 

of the numbers of hectares of the different soil-slope-type and hydrological connectivity level 

combinations included in the model, which vary in their yield and pollution generation potential. A 

farm’s productive capacity is therefore constrained by the size and quality of its land endowment.  

Land use and the level of fertiliser application are the primary choice variables that determine farm 

gross margin. The four broad land-use choices available to farmers include (i) cultivating sale crops, (ii) 

cultivating feed crops to meet on-farm livestock feeding requirements or (iii) selling certain feed crops 

to other farms within the catchment, and (iv) leaving the land as set-aside to receive environmental 

subsidies. The number of livestock on a farm are endogenously determined by the farm’s production 

choices in growing feed crops to meet the specified livestock feeding requirements (see Table 1 for 

description of the livestock types). Farmers within the catchment may trade fodder beet and maize 

feed crops amongst each other to meet their livestock feeding requirements. Intra-catchment 

exclusive trading prohibits pollution leakage through bought-in feed crops and accurately represents 

pollution generated by the catchment’s agricultural activities. Livestock manure which accrues over 

the housing period is used for fertilisation and reduces the cost of purchasing artificial fertiliser. 

Table 1: Description of included livestock types 

Livestock model labels Description 

Dairy 8,500 l all year calving (1 cow) 

Sheep1 improved hill breeds (100 ewes tupped) 

Sheep2 extensive hill breeds (100 ewes tupped) 

Finish1 finishing spring-born suckled calves at 18-20 months (1 steer) 

Finish2 forage based finishing dairy steers at 24 months (Holstein) 

Suckler upland suckler cows, calving period Feb-April (1 cow with calf) 

Note: livestock descriptions and corresponding grossmargin and forage assumptions sourced from 
SAC Consulting (2018)  

 
2 Given the revenue natural policy design and exclusion of subsidies from this analysis, 𝜓𝑎 is assumed to be zero. 
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The model in this paper will follow the nine ‘robust types’ proposed in the UK Farm Classification of 

DEFRA to aid its policy relevance. The five types most representative for the Eden catchment are 

chosen: Cereals, Dairy, LFA Grazing Livestock, Lowland Grazing Livestock, and Mixed Farms, where LFA 

and Lowland Grazing Livestock include different combinations of sheep, beef finishing, and suckler 

cows. Table 8 (Appendix) summarises the modelled farm heterogeneity in terms of the assumed 

geographical position, livestock produced, and soil slope distribution. As the dominant farm type for 

the Eden catchment, LFA Grazing Livestock is modelled twice with two different soil-/slope-type 

distributions. All farms are assumed to be of equal size and should be treated as representative farms 

of the average farm size for the Northwest of England 77 ha (DEFRA, 2021)3.  

2.3. Regulatory targets: 

In line with previous work, the environmental objective of the policymaker is expressed as a reduction 

in nutrient leaching (Martínez and Albiac, 2006; Semaan et al., 2007). Following its exit from the 

European Union, the UK is in the process of developing new regulatory agri-environmental targets. 

Currently, provisional targets for water nutrient pollution from agriculture are set at a 40% reduction 

in nutrient load by 2037 (DEFRA, 2022). Due to the novel level of biophysical detail and number of 

observed weather-years included in this analysis, the evaluation of daily pollution concentrations 

popular in the literature was computationally infeasible. In addition, as outlined above, current 

preliminary UK policy targets are expressed in nutrient load as opposed to concentration. Therefore, 

this paper analyses the policies’ associated abatement potential in terms of pollutant load to maximise 

its relevance in supporting current policy development.  

2.4. Modelled policies 

Following the literature, the modelled policies include incentive-based, command-and-control 

measures as well as mixed policy measures. Although transaction costs are not explicitly included in 

the empirical modelling - in favour of novel biophysical details, spatial targeting, and PA - they have 

informed the choice of policies. Firstly, a nutrient tax on fertilisers is modelled as an incentive-based 

pollution control policy popular in the literature (Claassen and Horan, 2001; Berntsen et al., 2003; 

Semaan et al., 2007; Jayet and Petsakos, 2013). Secondly, a set-aside policy is modelled as a command-

and-control measure (requiring land to be taken out of production). A stocking density reduction was 

tested as an additional regulation-based policy. Stocking density reductions prescribe a maximum 

grazing livestock unit per hectare. Moreover, considering the evidence that combining incentive and 

command-and-control policies may improve their cost-effectiveness (Aftab, Hanley and Baiocchi, 

2010), a mixture of set-aside and nutrient tax policies was modelled. Finally, to assess the impact of 

spatial targeting in agri-environmental policy in the context of technological advances in the sector, 

the set-aside policy is modelled as a uniform and a spatially targeted application. Table 2 summarises 

the details of the modelled policies. 

  

 
3 Earlier trials including different farm sizes were computationally costly and did not indicate a significant role of 
farm size differences in NPS pollution outcomes. However, given the well-documented important impact that 
differences in soil, slope and hydrological connectivity have on NPS pollution control, heterogeneity in these 
variables was prioritised over heterogeneity in farm size. 
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Table 2: Modelled policy scenarios 

Modelled 
Policies 

Scenario Description 

Non-targeted 
set-aside 

- Set-aside 1% - 40% of catchment agricultural land  
o Increments of 1 percentage point 

Targeted 
 set-aside 

- Set-aside 1% - 37% of catchment agricultural land of slope 4 
o Increments of 1 percentage point 

N tax 
- N tax from 50% - 5,000%  

o Increments of 50 percentage points from 2,000% 
o Increments of 5,000 percentage points to 5,000% 

Mixed N tax & 
1% set-aside* 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 5,000 percentage points to 5,000% 

- Set-aside of 1% of catchment agricultural land 

Mixed N tax & 
2% set-aside 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

- Set-aside of 2% of catchment agricultural land 

Mixed N tax & 
5% set-aside 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

- Set-aside of 5% of catchment agricultural land 

Precision 
Agriculture 

- Fertiliser efficiency factor from 5% - 45%  
o Increments of 5 percentage points 

P tax* 
- P tax from 50% - 5,000% 

o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

N tax 
& P tax 

- N tax from 50% - 2,000%  
o Increments of 50 percentage points  

- P tax from 50% to 2,000% 
- Increments of 50 percentage points  

Note: To facilitate visual representation of the results, policies lacking cost-effectiveness were 
*excluded from summary trade-off graphs for all pollutants 

 

The model is implemented as a non-linear optimisation in GAMS (GAMS Development Corporation, 

2019), in line with numerous studies in the literature (Berntsen et al., 2003; Kampas and White, 2004; 

Martínez and Albiac, 2006; Hasler et al., 2014; Wang, Önal and Fang, 2018; Böcker, Möhring and Finger, 

2019). The non-linear optimisation includes 126,905 single equations and 274,478 single variables at 

the baseline. 

2.5. Yield and pollution Data 

The yield and environmental pollution data are based on simulations from the Environmental Policy 

Integrated Climate (EPIC) model (Williams, 1990), which were run as part of a wider ESRC funded 
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project (Economic and Social Research Council, 2019) in collaboration with the Durham University 

Mathematics and Geography departments. 

2.6. Weather data 

A novel range of 58 years of daily observed weather data (1954-2011) from the UK’s Meteorological 

Office4 were used as precipitation, minimum and maximum temperatures, relative humidity, and wind 

speed variables in the simulations for the catchment. Following data cleaning and testing 45 weather-

years were used in the final model. In addition to yields (Basso et al., 2013), weather conditions also 

significantly impact agricultural NPS pollution and affect the effectiveness of NPS control policies 

(Aftab, Hanley and Baiocchi, 2010).  

2.7. Soil- and slope- types 

This description of the soil and slope data is based on Reaney (2012). Data on the catchment soils was 

sourced from NSRI NATMAP soil mapping with links to the Hydrology and Agronomy soil series data5, 

which provide a national mapping of UK soil properties. Soils were grouped into five soil-types, and 

their classifications were based on the two soil properties which are the most relevant to diffuse 

pollution generation: ‘Surface Percentage Runoff’ (SPR) and ‘Base Flow Index’ (BFI). Table 3 provides a 

summary of the names, descriptions, and areas covered for the chosen soil-types.  

Table 3: Soil-type descriptions and catchment proportions 

Soil Label Classification and Description Area (ha) 
Proportion of 

Catchment (%) 

Soil 1 
Wick: light loamy drift with 

siliceous stones 
64,211 51 

Soil 2 
Newbiggin: reddish medium 

loamy drift with siliceous stones 
45 0.001 

Soil 3 
Malvern: loamy lithoskeletal 

basic crystalline rock 
19,159 15 

Soil 4 
Clifton: reddish medium loamy 

drift with siliceous stones 
42,020 33 

Soil 5 
Winter Hill: mixed eriophorum 

and sphagnum peat 
964 1 

Total area  126,400  

 

Table 3 demonstrates relatively similar loamy characteristics between the different soil types and their 

uneven distribution within the catchment (84% of soil is given by soils 1 &4). In addition to prevalent 

soil-types, degrees of steepness representative of the catchment were also included in the simulations 

(4 different slopes, see Table 4 for a list of the chosen slopes). 

 
4 https://www.metoffice.gov.uk/services/data (accessed 18/6/2020) 
5 http://www.landis.org.uk/data/series.cfm (accessed 29/4/2020) 

 

https://www.metoffice.gov.uk/services/data
http://www.landis.org.uk/data/series.cfm
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Table 4: Slope values and catchment proportions 

Slope Label Slope Values (%) Area (ha) 
Proportion of 
Catchment (%) 

Slope 1 0 – 1.39 11,678 9 

Slope 2 1.4 – 4.19 37,641 30 

Slope 3 4.2 – 7 30,696 24 

Slope 4 7.01 – 12.8 46,384 37 

 

2.8. Management scenarios and crop rotations 

 

The two management practices include conventional agriculture like the use of artificial fertilisers and 

a conservation practice, including the use of farmyard manure. For both management practices, 

various rotations representative of typical systems implemented in the UK were chosen for the 

simulations. The 24 simulated River Eden catchment rotations range from five to 12 years in length. In 

addition, 12 long-term monocropping simulations spanning 40 years were simulated, including the 

different grazing and cutting grass types grown as well as one miscanthus simulation. The Wilcoxon 

Signed Rank test was used to test the hypothesis that crop rotations and positions within crop rotations 

significantly impact yield outcomes. Out of 208 resulting crop pairs, 178 pairs rejected the null at the 

5% significance level, while 30 pairs failed to reject the null of insignificant differences in yield 

distributions. The results thus suggest that 85% of the crops in the sample show significant differences 

in yield distributions when placed in different crop rotations or positions within the same rotation. 

Those results demonstrate the importance of including realistic crop rotations in biophysical-economic 

models to accurately represent yield and pollution trade-offs. Further, the finding highlights this paper’ 

contribution in using the EPIC dataset and its uniquely extensive number of crop rotations and different 

crops. 

2.9. Production and Pollution Functions 

Due to the high number of combinations (crop, rotation, weather-year, soil, slope, and management 

scenario), 1,985,920 different yearly yield and pollution output files were estimated for the Eden 

catchment. Several “unique crop pairs” were chosen from the rotations to reduce the output for 

further analysis. A crop pair denotes two crops grown in a sequence as part of a particular rotation. 

The optimisation uses the yield and pollution output in a year of the second crop in the pair.  

Nonetheless, these outputs are also influences by the impacts of the first crop in the pair. Accounting 

for previous crops when considering NPS pollution and yield is important as soil characteristics (e.g., 

nutrient availability in the soil) continue to be impacted by the cultivated crop beyond the year of 

cultivation. Therefore, by defining crop pairs, we can account for and compare the impact farmers’ 

different planting decisions of the previous year have on the current year’s environmental and 

economic indicators. For each management scenario, between 60 and 98 crop pairs were chosen for 

further analysis. Crop pair choice was informed by obtaining a sample representative of farmers’ 

planting behaviour in the Eden catchment.  

Mitscherlich-Baule yield functions were fitted to the simulated yield data. The Mitscherlich-Baule 

functional form was chosen based on its theoretical properties and simple model adequacy tests as 

opposed to more rigorous tests for non-nested models such as the J-test or the N-test (as investigated 

by Pesaran (1982)). N and P were chosen as the two varying inputs, and the estimations used range 

from zero to the defined crop-specific fertiliser maxima. Equation 3 presents the weather-year- (𝑤), 
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soil- (𝑠), and slope- (𝑙) specific yield function where 𝛽0𝑤𝑠𝑙 , 𝛽1𝑤𝑠𝑙 , 𝛽2𝑤𝑠𝑙 , 𝛽3𝑤𝑠𝑙, 𝛽4𝑤𝑠𝑙  are the estimated 

coefficients , 𝛽5represents a scaling factor, and 𝑌𝑖𝑤𝑠𝑙  presents the dry weight EPIC unique crop pair 

yield in t/ha for the chosen N (𝑁𝑖) and P (𝑃𝑗) fertilisation levels in kg/ha.                                                                                                                                                    

𝑌𝑖𝑗𝑤𝑠𝑙 = 𝛽5wsl + 𝛽0𝑤[1 − exp(−𝛽1𝑤(𝛽2𝑤 + 𝑁𝑖))][1 − exp(−𝛽3𝑤(𝛽4𝑤 + 𝑃𝑗))] (3) 

Inside the optimisation of the biophysical-economic model, a yield function fitted as an average over 
the 45 different weather-years is used in the final model. This approach facilitates computation and 
accounts for the fact that ex-ante farmers cannot predict the year’s weather when making crop 
cultivation and fertiliser application decisions. 

With respect to pollution functions, six pollution variables were chosen for the analysis. The daily and 

monthly pollution data from the EPIC simulation were converted into 45 yearly pollution function 

estimates corresponding to the 45 included weather-years. These were combined into an average 

scaled pollution function to facilitate the analysis of general pollution trends. The linear and quadratic 

functional forms were based on theoretical relationships between pollutants and fertiliser inputs as 

well as data exploration. The chosen functions for the six pollution variables of interest in this analysis 

are presented in Table 9 (Appendix). 

 

2.10. Hydrology Framework 

In addition to soil-type, degrees of steepness, and management scenarios, geographical features such 

as the hydrological connectivity of a land parcel are key predictors of NPS pollution generation 

(Heathwaite, Quinn and Hewett, 2005). Previous biophysical-economic models which analyse agri-

environmental policies largely fail to capture the hydrological risk component of NPS pollution required 

for spatially targeted policies. Therefore, this thesis builds on previous works and includes the 

hydrological connectivity within the catchment in its analysis. The hydrological connectivity data was 

sourced from SCIMAP6. For a detailed description of SCIMAP see Reaney and Wells  (2014). The SCIMAP 

predictions were tested on the Upper Rye catchment in North Yorkshire, which is hydrologically, 

geomorphologically, and climatologically comparable to the Eden catchment and found to 

satisfactorily predict hydrological connectivity (Lane, Reaney and Heathwaite, 2009). 

Hydrological connectivity is represented as a ranking parameter ranging from 0 – 1, where 0 represents 

the lowest and 1 the highest hydrological connectivity level for all land covers within the catchment. 

For the biophysical-economic model, the catchment’s agricultural land is divided into intervals of 

hydrological connectivity at a scale of 0.17. The resulting levels of connectivity are presented in Table 

10 (Appendix). The majority of the catchment’s agricultural land is characterised by relatively low 

hydrological connectivity, with 97.68% of the Eden’s agricultural area displaying levels of hydrological 

connectivity equal to or below the 40th percentile on the connectivity ranking (see Figure 1, Appendix). 

 

2.11. Weather sensitivity 

As outlined above, the pollution estimates are based on average pollution functions. The sensitivity of 

these pollution estimates to the individual 45 pollution years was tested using the baseline land and 

 
6 http://www.scimap.org.uk/ (accessed 15/6/2020) 
7 An alternative finer resolution distribution with 100 hydrological connectivity levels was investigated but ultimately not 
used in the model due to computational constraints. See Error! Reference source not found., Error! Reference source not 
found., p. 181 for the finer resolution distribution for intervals of 0.01. 

http://www.scimap.org.uk/
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fertiliser allocation. Table 5 presents the measures of variability between the pollutants’ weather-

specific levels.  

Table 5: Sensitivity of pollutants across 45 weather-years 

Pollutant Variance SD Mean Maximum Minimum Unit 

CFEM 3,533.3 59.4 44.9 280.6 0.07 kg/ha 

NGLOAD 3,253.1 57.0 28.5 251.4 0.01 kg/ha 

NRLOAD 13.1 3.6 2.5 10.8 0.18 kg/ha 

PGLOAD 23.0 4.8 3.9 26.6 0.02 kg/ha 

PRLOAD 7.9 2.8 2.9 12.6 0.02 kg/ha 

ZLOAD 20.1 4.5 2.7 25.4 0.01 t/ha 

Note: Estimates based on baseline land allocation and fertiliser input 

 

Firstly, the range of pollution levels indicated by the maximum and minimum values are considerable. 

Minima of close to no pollution could be explained by a year of optimal weather conditions. Given the 

Eden catchment’s exceptionally high level of average rainfall, a dryer year with moderate rainfall at 

periods appropriate for supporting plant growth could lead to the very low pollution levels shown. As 

weather patterns are becoming increasingly extreme and “optimal” weather-years scarcer due to 

climate change, we expect both the maximum and minimum pollution levels to increase further over 

the coming years.  

Table 6: Annual pollution level deviation from mean by pollutant 

Pollutant 
Annual pollution 
levels within mean 
+/- SD (%) 

Annual pollution 
levels outside mean 
+/- SD (%) 

Annual pollution 
levels greater than 
one SD + mean (%) 

CFEM 88 12 12 

NGLOAD 87 13 13 

NRLOAD 91 9 9 

PGLOAD 89 11 11 

PRLOAD 82 18 15 

ZLOAD 93 7 7 

 

Despite the considerable range of the pollution levels for the six pollutants between 82% - 93% of 

annual pollution levels fall within one SD of their mean (see Table 6). This distribution suggests that 

while there are significant deviations from mean pollution levels in 18% - 7% of years, most weather-

years lead to pollution outcomes relatively close to their mean.  The results further demonstrate that 

the significant deviations from the mean are almost exclusively higher pollution levels rather than 

lower pollution levels (i.e., the pollution level distribution is right-skewed). Given the potentially 

significant long-term effects of exceptionally high pollution level events, 7% - 15% of such events for 

the different pollutants could still represent a significant environmental threat. This finding underlines 

the importance of using large weather datasets to capture the impacts of weather-years on NPS 

pollution outcomes. 
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2.12. Precision Agriculture 

The assessment of PA focusses on Variable Rate Nitrogen Application (VRNA) specifically and assumes 

that through improved information, farmers adopting PA shift from within the production possibility 

frontier (PPF) onto the PPF. Following Colaço & Bramley (2018)’s comprehensive review of agronomic 

evidence, VRNA is modelled as an efficiency factor applied to the yield functions ranging from 5%-45%. 

 

3. Results 
Table 7 summarises the results at key environmental reduction targets for each chosen pollutant. 

Across the pollutants, policies show similar levels of high cost-effectiveness up to the regulatory target 

of around 20% abatement, which is achieved at a maximum social cost of around 5% of the catchment 

gross margin. 

Generally, a combined N & P tax and an individual N tax provide the most cost-effective abatement for 

mid- to low-level regulatory targets across pollutants. For higher regulatory targets (above around 30% 

of abatement), an individually applied N tax provides more cost-effective pollution abatement. This 

result aligns with the economic expectation that higher degrees of freedom, which farmers have under 

incentive-based policies, facilitate lower abatement costs than those under regulation-based policies 

imposed by a government with imperfect information on farmers’ cost curves (Shortle and Dunn, 

1986). Kampas and White (2004) also find a N input tax to act as a cost-effective policy option, 

particularly when transaction costs are accounted for. While transaction costs were not explicitly 

accounted for in modelling, they informed policy selection.  

Notably, the results demonstrate the price inelastic demand for fertiliser, as high levels of N taxation 

are required to achieve reductions in artificial N application. An N tax of around 800% reduces N 

consumption by around 10%. Jayet and Petsakos (2013) generally also find N fertiliser use in France to 

be relatively price inelastic; although, their results suggest a higher elasticity (100% tax leading to 15%-

20% reduction in nitrate emissions at the national  to regional level). The presented results closely 

align with Schmidt et al. ‘s (2017) more recent agent-based analysis of N surplus in Switzerland which 

found an 800% N tax to reduce N surplus by 10%. The authors suggest that the low response to the N 

tax may be partially explained by the large proportion of dairy and livestock farming in the Swiss 

agricultural sector which aligns with the described Eden catchment characteristics. 

In addition to N demand elasticity, this paper’ detailed analysis of the N tax response finds that farms 

shift from higher-input crops to lower-input crops. In the process, they initially compensate for their 

lost yield by increasing production on the lower-input crops at the intensive margin (increasing 

fertiliser application) as well as the extensive margin (increasing land allocation). This outcome aligns 

with Jayet and Petsakos’ (2013) findings for a livestock intensive catchment (Basse-Normandie, 

France).  

Across the pollutants, an individual set-aside policy generally does not present the most cost-effective 

option. Set-aside does not lead to increases at the intensive margin (i.e., farmers are not increasing 

fertiliser application to compensate for yield losses due to set-aside). However, they do shift towards 

FYM crops due to limited FYM storage. In contrast, Chakir and Thomas’ (2022) recent econometric 

work on the intensive margin effects of set-aside suggests that as farmers increase set-aside in 

response to a rise in set-aside subsidy, their fertiliser consumption does increase to compensate for 

reduced output. In the revenue neutral policy setting model of this paper, this income effect is not 

observed as no set-aside subsidy is modelled. Moreover, given the constraints on FYM storage, the 

share of FYM crops increases in line with set-aside requirements as farms compensate for land taken 
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out of production to empty their manure stores which may outweigh potential income and 

substitution effects.  

As demonstrated in Table 7, set-aside does not achieve the highest sediment abatement potential 

amongst the modelled policies. This result does not align with the expectation due to set-aside’s more 

direct theoretical link to sediment pollution than other modelled policies such as fertiliser taxation. 

Hodge et al.’s (2006) report on set-aside options for English agricultural policy suggest that the impact 

of set-aside measures are highly dependent on individual catchment characteristics. This is supported 

by Secchi et al.’s (2007) modelling work on an agricultural water pollution abatement policy 

combination including set-aside for 13 watersheds in Iowa, USA. They find sediment abatement varies 

significantly between watersheds (6% - 65%) driven by differences in size and environmental 

conditions. For this paper the relatively low sediment abatement potential of set-aside policy may be 

explained by the 78% grassland cover of the assessed Eden catchment. 

Up to a regulatory target of around 25-30% of baseline pollution abatement, spatially targeting the 

set-aside policy to the highest pollution risk slope-type, provides modest improvements to cost-

effectiveness. At higher levels of spatially targeted set-aside farmers are given less choice over which 

land to take out of production. They are forced to set-aside relatively more productive land of slope-

type 4 instead of relatively less productive land of other slope-types in a non-spatially targeted 

scenario. The more prescriptive targeted set-aside is, therefore, less cost-effective than the non-

targeted set-aside at high set-aside levels. In the context of irrigated corn production in the Ebro basin 

of the Iberian Peninsula, Martínez and Albiac (2006) also find that pollution control policies spatially 

differentiated by soil-type provide a small welfare improvement compared to a homogeneously 

applied standard. Hasler et al. (2019) find that spatially targeting NPS N pollution control policies 

according to heterogeneous hydrological factors significantly reduces abatement costs in the Danish 

Limfjorden catchment. The authors stress that the Limfjorden catchment is characterised by high 

variation in N retention (spanning from 0 – 100% with a 65% average) and that, in line with the findings 

of this paper, spatial targeting has a smaller effect on catchments with lower heterogeneity levels in 

hydrological connectivity. These findings highlight that the Eden catchment’s limited heterogeneity in 

the soil-types and hydrological connectivity levels explain why spatially targeted policies by soils and 

hydrological connectivity were not found to be cost-effective. 

 

Table 7: Results summary for key modelled policies and pollutants 
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NRLOAD 2 2.0 4 9.0 4 25.0 9.0 

PRLOAD 4 2.0 4 9.0 5 29.0 9.0 

ZLOAD 3 2.0 4 9.0 4 33.0 9.0 

CFEM 2 2.0 2 6.0 1 56.0 14.5 
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Targeted 

set-aside 

NRLOAD 2 2.0 5 10.0 6 21.0 10.0 

PRLOAD 4 2.0 5 10.0 6 21.0 10.0 

ZLOAD 2 1.5 5 9.5 5 23.0 9.5 

CFEM 1 1.0 6 14.5 5 32.0 14.5 

N tax 

NRLOAD 1 1.0 1 3.5 2 47.0 5.0 

PRLOAD 2 1.0 1 3.5 3 46.0 5.0 

ZLOAD 1 1.0 1 4.0 2 51.0 5.5 

CFEM 3 3.0 1 5.0 4 37.0 5.0 

Mixed N tax 

& 2% set-

aside 

NRLOAD 2 2.0 2 6.0 1 48.0 7.0 

PRLOAD 3 1.5 2 5.0 2 48.0 6.5 

ZLOAD 2 1.5 2 6.0 3 37.0 6.0 

CFEM 1 1.0 3 7.0 3 38.0 7.0 

Mixed N tax 

& 5% set-

aside 

NRLOAD 3 2.5 3 7.0 3 46.0 9.5 

PRLOAD / / 3 6.5 1 50.0 8.0 

ZLOAD / / 3 6.5 1 53.0 8.5 

CFEM / / 4 8.0 2 41.0 8.0 

Precision 

Agriculture 

NRLOAD 4 4.0 / / 5 22.0 9.0 

PRLOAD 5 3.0 / / 7 17.0 0.5 

ZLOAD 4 3.5 / / 6 19.0 0.5 

CFEM 4 3.5 / / 7 18.0 0.5 

N & P tax 

NRLOAD 1 1.0 4 9.0 5 22.0 9.0 

PRLOAD 1 0.5 2 5.0 4 40.0 9.5 

ZLOAD 2 1.5 2 6.0 3 37.0 6.0 

CFEM 1 1.0 5 9.0 6 31.0 9.0 

Note: *ranked by social cost in ascending order, **ranked by max abatement potential in descending order 

 

A mixed policy combining set-aside with N taxation is generally found to outperform an individual set-

aside policy and shows the highest maximum abatement potential of the modelled policies across 

most pollutants. However, the mixed instrument remains less cost-effective than the modelled N tax. 
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This result mirrors Aftab, Hanley and Baiocchi’s (2010) finding that mixed instruments’ relative cost-

effectiveness improves at higher regulatory targets in the Scottish West Peffer catchment. Their results 

further suggest that single instruments outperform mixed instruments in average weather-years which 

closely align with our findings. Bourgeois, Ben Fradj and Jayet (2014) also find that mixed-policy 

instruments improve cost-effectiveness for N water pollution abatement in France. 

 

PA is shown to provide between around 2% to 20% pollution reduction across the pollutants for the 

assumed efficiency factors between 5% and 45% at a social cost between 4% and 3%. Efficiency gains 

show diminishing returns to pollution abatement as efficiency gains up to 20% show the largest 

marginal pollution abatement of the modelled efficiency factor increments. In contrast, Schieffer and 

Dillon’s (2015) simulation of VRNA shows an increased N consumption and carbon footprint due to 

higher average N application to increase yields and net returns. Their one farm model focusses on 

cereal production in western Kentucky and includes a limited representation of biophysical conditions 

(e.g.: two crop rotations, N application as a proxy for N runoff). This paper extends their work as a 

catchment-scale analysis of PA in an economic model with a novel biophysical detail in the literature. 

This paper finds both increased yield and reduced fertiliser consumption which combine the two 

effects that Heege (2013) highlights as the key VRNA impacts on N use efficiency. However, the 

presented results also demonstrate that these efficiency improvements of PA do not outweigh the 

costs associated with them. These findings may be explained by the Eden catchment characteristics 

which include its lack of heterogeneity and dominance of grassland. They further demonstrate the 

synergies between PA and spatial targeting relate which primarily relate to the catchment 

preconditions required for their successful implementation. In particular, the distribution of soils and 

hydrological connectivity outlined above, which limit the Eden catchment’s suitability for spatially 

targeted policies, analogously apply to its suitability for PA implementation. PA requires heterogeneity 

in catchment characteristics to provide efficiency benefits through targeted input application 

(Schneider and Wagner, 2008). The limited cost-effectiveness of PA may be further explained by the 

fact that farm size is assumed constant in this analysis. Schneider and Wagner’s (2008) findings in the 

context of cereal crop cultivation suggest that VRNA costs per hectare fall as farm size increases. 

 

4. Conclusions 
The presented bio-physical model for the Eden catchment, firstly provide a general reference point for 

policymakers when balancing the ambition of environmental abatement across the six analysed 

pollutants with political considerations of farmers’ economic position. The modelled policies show high 

levels of cost-effectiveness for mid – lower regulatory abatement targets. Specifically, up to around 

20% of abatement is achieved at a maximum social cost of around 5% of catchment gross margin. 

In line with expectations, a combined N&P tax and an individual N tax provide the most cost-effective 

abatement for mid – low level regulatory targets (Shortle and Dunn, 1986; Kampas and White, 2004). 

The model also demonstrates that demand for N fertiliser is highly inelastic (800% tax leads to 10% 

reduction in N consumption) (Schmidt et al., 2017). In the revenue neutral context of this analysis the 

associated social costs are only around 0.5% of catchment gross margin. However, in real world 

applications perceptions of taxation levels as high as 800% may have strategic implications and warrant 

political consideration.  

A set-aside policy is not found to provide cost-effective abatement or the highest abatement potential 

of the modelled policies which may be explained by the individual Eden catchment characteristics. To 

improve the cost-effectiveness of set-aside, the results suggest that policymakers may wish to combine 
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set-aside to a mixed policy instrument with an N tax particularly at high regulatory targets (Aftab, 

Hanley and Baiocchi, 2010). Mixed instruments also achieve the highest maximum pollution 

abatement potential across the majority of analysed pollutants. 

Spatially targeted policies according to slope-types are found to provide only insignificant cost-

effectiveness improvements with respect to uniformly applied policies. This finding can be explained 

by Eden’s specific catchment characteristics (low level of heterogeneity and significant grassland cover) 

which the literature supports as a key influence on the cost-effectiveness of spatially targeted policies 

(Martínez and Albiac, 2006; Hasler et al., 2019). These results highlight the importance of considering 

catchments’ detailed biophysical characteristics and ensuring they are sufficiently heterogeneous to 

ensure spatial targeting can be a cost-effective NPS control tool.  

This precondition of sufficient heterogeneity required for successful implementation of spatially 

targeted policies equally applies to PA. Analogously to spatially targeted policies, PA is not found to be 

cost-effective as implementation costs outweigh the achieved productivity benefits (reduced fertiliser 

consumption and increased yields at the catchment scale). These results may be explained by the lack 

of heterogeneity in the Eden catchment and significant grassland cover (78%) outlined above for the 

spatial targeting results. In catchments which meet the pre-conditions of sufficient heterogeneity, PA 

may contribute towards NPS pollution control and productivity efforts.  

Finally, this paper has included a novel level of biophysical detail in its modelling. Crop rotations are 

found to lead to significantly different average yield outcomes. The importance of detailed biophysical 

data in this research is further strengthened by the significance of heterogeneity (e.g., soil, slope, 

hydrological connectivity types, and weather data) for success in using spatial targeting and PA 

discussed above. Policy evaluations including targeted policy options should therefore be based on 

state-of-the-art details in biophysical-economic modelling.  

 

Appendix 

Table 8: Modelled farms type distributional attributes 

No. 
Hypothetical 

farm 
position 

Farm-type and livestock-type Soil-type Slope-type 

1 Upland 
LFA Grazing Livestock  

(sheep + suckler) 
Less 

productive 
Steeper 

2 Lowland 
Dairy farm  

(dairy + some finish) 
More 

productive 
Less Steep 

3 Upland 
LFA Grazing Livestock  

(sheep + suckler) 
Mixed Mixed 

4 Lowland 
Lowland Grazing Livestock  

(dairy + finish) 
Mixed Mixed 

5 Lowland 
Cereal  

(sale crops) 
More 

productive 
Mixed 

6 Lowland 
Mixed  

(sale crops + sheep) 
Mixed Mixed 
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Table 9: Functional forms and theoretical reasoning for pollution functions 

Pollution Variable Function of N and or P Theoretical Reasoning 

Sediment 

mobilised (t/ha) 
𝛽0,𝑍𝐿𝑂𝐴𝐷 + 𝛽1,𝑍𝐿𝑂𝐴𝐷 × 𝑁 

Plant growth is driven by N application. Larger plants with more developed 

root systems reduce erosion. However, sediment pollution is more strongly 

influenced by the employed tillage system than the level of fertilisation. 

N to River 

(kg/ha) 
𝛽0,𝑁𝑅𝐿𝑂𝐴𝐷 + 𝛽1,𝑁𝑅𝐿𝑂𝐴𝐷 × 𝑁 

Increased N application increases the amount of N available on and in the soil, 

increasing N leaching to the river. 

N to groundwater 

(kg/ha) 
𝛽0,𝑁𝐺𝐿𝑂𝐴𝐷 + 𝛽,1𝑁𝐺𝐿𝑂𝐴𝐷 × 𝑁 

Increased N application increases the amount of N available on and in the soil, 

increasing N leaching to groundwater. 

P to the river 

(kg/ha) 

𝛽0,𝑃𝑅𝐿𝑂𝐴𝐷 + 𝛽1,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑁

+ 𝛽2,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑃

+ 𝛽3,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑃 × 𝑁 

Increased P application increased P leaching to the river. Increased plant 

growth through increased N application can reduce the amount of P leaching 

as larger plants absorb more of the available P. 

P to groundwater 

(kg/ha) 

𝛽0,𝑃𝐺𝐿𝑂𝐴𝐷 + 𝛽1,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑁

+ 𝛽2,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑃

+ 𝛽3,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑃 × 𝑁 

Increased P application increased P leaching to groundwater. Increased plant 

growth through increased N application can reduce the amount of P leaching 

as larger plants absorb more of the available P. 

Carbon emission 

(kg/ha) 

𝛽0,𝐶𝐹𝐸𝑀 + 𝛽1,𝐶𝐹𝐸𝑀 × 𝑁 + 𝛽2,𝐶𝐹𝐸𝑀 × 𝑃

+ 𝛽3,𝐶𝐹𝐸𝑀 × 𝑃 × 𝑁 

Increased fertiliser application (N and/or P) may increase carbon emissions due 

to increased machinery use and soil perturbation. 
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Table 10: Definition of hydrological connectivity Intervals at different scales 

Intervals of 0.1 

Conn_1 = [0 - 0.1] 

Conn_2 = [0.11 - 0.2] 

Conn_3 = [0.21 - 0.3] 

Conn_4 = [0.31 – 0.4] 

Conn_5 = [0.41 – 0.5] 

Conn_6 = [0.51 – 0.6] 

Conn_7 = [0.61 – 0.7] 

Conn_8 = [0.71 – 0.8] 

Conn_9 = [0.81 – 0.9] 

Conn_10 = [0.91 - 1] 

 

Figure 1: Distribution of hydrological connectivity levels (intervals of 0.1) across soils and slopes 
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