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Abstract

Since the inception of the novel coronavirus virus, immense research efforts have
been made to understand how several economic indicators, including food security,
would be affected. With India racing behind the United States in terms of daily
infection rate and being a country with challenging food security issues, it is impor-
tant to investigate how the presence of the pandemic has influenced the dynamics
of food prices in the country. This paper considers seven price series from 167
markets across the five regions in India, as well as the growth rate of COVID-19 in-
fection. The paper uses a time-varying autoregressive (TVAR) model to investigate
the nonlinear dynamics of food prices in relation to the pandemic in India. The re-
sultant models reveal strong asymmetric properties with shock-inflicted persistence,
which appear not to converge over the simulation period. Moreover, in terms of the
location of the burden of the pandemic impact, we find a food product divide.
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1 Introduction

COVID-191, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2),
was first identified in the Chinese city of Wuhan on December 31, 2019. Due to its rapid
spread across the world, the World Health Organization (WHO) assigned it a “pandemic”
status on March 11, 2020.2 In addition to raising the morbidity and mortality levels, the
COVID-19 pandemic and the associated measures deployed to control contagion triggered

∗Correspondence concerning this paper should be forwarded to lotanna.emediegwu@manchester.ac.uk.
1Everywhere else, we may refer to the disease as covid or coronavirus.
2As of October 29, 2021, covid infection had been confirmed in over 220 countries and territories.
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a historic halt in economic activities. Unsurprisingly, the pandemic generated massive
disruption in global and regional food supply chains and could potentially worsen the
food insecurity crisis in many countries. However, less is reported about the effect of the
COVID-19 pandemic on food prices.

Few attempts have been made to examine the impact of COVID-19 on food prices
in different settings. For instance, Amare et al. (2021) apply a difference-in-difference
approach to investigate the implication of the pandemic for food security and labor market
participation in Nigeria. They find that both infection rates and restrictions designed
to contain the spread of the pandemic significantly raise local food prices in Nigeria.
However, this study employs an aggregate measure of food price. In the same vein, Yu
et al. (2020) analyze the impact of COVID-19 on four food prices in three (out of the
23) provinces in China. Using fractionally integrated GARCH (iGARCH) model, they
find that the pandemic has no significant impact on rice and wheat flour prices in China.
However, they report mixed results for pork prices and a significantly positive effect on
cabbage prices.

Akter (2020) assesses whether the COVID-19 related stay-at-home restrictions af-
fected seven food categories in 31 European countries, with data spanning January–May
2020. The empirical results, obtained from a series of difference-in-difference regression
models, reveal that the severity of stay-at-home restrictions increased overall food prices
by 1% in March and April 2020 compared to January and February 2020. Similarly,
using dynamic panel data model, Agyei et al. (2021) find that the number of COVID-19
infections adversely affects the prices of maize, sorghum, and imported and local rice in
sub-Saharan Africa. However, they find that lockdown was associated with an increase
in the price of maize only and had no effect on sorghum, imported, and local rice prices.

This paper seeks to analyze the effect of COVID-19 on food prices in India. India
is of particular interest given that it has the second-highest growth rate of COVID-19
after the United States.3 It is also considered one of the countries that imposed the
longest and strictest lockdowns (Mishra & Rampal 2020). Moreover, the country still
grapples with the challenges of food insecurity despite the important role of agriculture
in India’s economy. Food prices and their volatility have been linked with food insecurity,
malnutrition, and other health outcomes, as well as poverty, especially in developing
countries (Amolegbe et al. 2021, De Hoyos & Medvedev 2011). Hence, an investigation
into the pandemic-food prices nexus can be useful in explaining the food security situation
in India.

Our second and most significant contribution is in terms of the methodology we em-
ploy. We employ a time-varying approach to account for structural instability, a critical

3As of October 29, 2021, over 246 million people worldwide have been infected with the virus, with
almost five million deaths. The most severely affected countries are the U.S., India, and Brazil, in that
order.
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feature of prices, especially when observed over long time spans. Previous studies focusing
on the impact of the pandemic on food prices use standard linear models, such as linear
regression and vector autoregression (VAR), to model price changes. One main shortfall
inherent in these econometric strategies is the assumption of a linear relationship between
commodity prices and some exogenous shocks, such as COVID-19. The use of linear mod-
els adds some intricacies to the linkage between COVID-19 signals and food prices. For
example, price behavior can differ between the pre-pandemic and pandemic era. Further-
more, there is compelling evidence from Balagtas & Holt (2009), Deaton (1999), Deaton
& Laroque (1992) that the behavior of many agricultural commodities prices follows a
nonlinear regime-dependence. Given these two reasons, the use of standard linear models
like VAR may not correctly model the relationship between price movements and some
exogenous shock, like the global pandemic and the attendant restrictions. Consequently,
we utilize a time-varying autoregressive (TVAR) model to investigate the nonlinear dy-
namics of food prices in relation to the pandemic status in India, as well as to further
control for potentially complex dynamic relationships between the two variables.

Moreover, while previous similar studies consider either food prices of a subset of a
country or at country-level, this study takes a holistic approach by considering all regions
in India. The food prices data are gathered from more than 160 markets across the county,
while the covid data is from the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University. In addition to the covid index used, our sample’s temporal
length ensures that we capture the food price variations in a typical year other than
just occurrences in a limited part of the year as done in previous studies. Furthermore,
using the entire regions in India rather than only a single region or few cities allows for
substantial heterogeneity in our model.

We find that parameter constancy is mostly rejected for prices of perishable products
like onions. On the other hand, our results show that prices of cereal crops, sugar, and
milk are affected by the pandemic in India. Besides, most nonlinear models exhibit strong
asymmetric properties with shock-inflicted persistence, which appear not to converge over
the simulation period. Consequently, the price dynamics in the pre-pandemic regime differ
from those during the pandemic era.

The rest of the paper is ordered as follows: Section 2 considers several channels
through which the pandemic affects food prices. Data description and model specification
are considered in Section 3. The main results are discussed in Section 4, and finally,
Section 5 concludes the paper with some policy recommendations.

2 COVID-19 and Food Prices: Potential Mechanisms

From a theoretical perspective, the price of any commodity may likely change with
changing demand and supply conditions. Hence, food prices are expected to react to
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massive disruptions in the demand and supply of food products caused by the COVID-
19 pandemic and its associated containment measures. On the supply side, COVID-19
restrictions, such as lockdowns, will reduce food availability. Although exemptions were
granted to agricultural workers to ensure continuity of food production, voluntary stay-at-
home as a protective mechanism or shielding by infected farmworkers, as well as deaths
from covid infection, would lead to farm labor shortages (Jaacks et al. 2021, Ceballos
et al. 2020). Besides, the closure of borders further reduces food availability since food
importation is halted. This shortage has direct adverse consequences for food production,
which, in turn, results in rising food prices.

Also, national and state-level restrictions of movement massively affected the trans-
portation sector, which is a critical sector in the food system value chain (Maliszewska
et al. 2020). Transport cost has risen dramatically in many Indian states due to social
distancing measures. Ergo, the increased cost of transporting food commodities from
the point of production to the consumers. Also, the movement of factors of produc-
tion and raw materials to farms where they are needed is affected by disruption in the
transportation sector. Consequently, barrier to transportation owing to the COVID-19
induced restrictions may prevent farmers from reaching their farms or cause wastage of
harvested farm produce since these cannot get to the final consumers. This mismatch
between demand and supply creates some form of artificial scarcity, thereby impacting
food prices. In addition, the possibility of hoarding (non-perishable) food for the sake
of profiteering by intermediaries along the retail value chain would restrict supply and
affect prices.

On the demand side, the uncertainty owing to the novelty of the pandemic and limited
knowledge of the duration of lockdown elicits panic buying of essential goods, including
the ones with extended shelf lives. Given the inelastic character of food demand, this
sharp increase in demand has implications for the prices of food items. Consequently, Lo-
cal markets are stressed because demand is high, but food supply is scarce and expensive
(Emediegwu 2020).

Summarily, while there are several channels through which ENSO shocks can influence
food prices, our intention is not to quantitatively unpack the individual channels, rather
we employ a reduced-form framework to analyze the general pass-through effect of the
COVID-19 pandemic on food prices in India.
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3 Model Specification and Data Description

3.1 Data Sources

3.1.1 Food Prices Data

We use daily data for selected food prices and covid case count in India. As measures
of food prices, we use daily average nominal prices from several markets across India.
The food price dataset comes from the Ministry of Consumer Affairs, Food and Public
Distribution in India. The Price Monitoring Division (PMD) in the Department of Con-
sumer Affairs receives the prices of food commodities daily from the State Civil Supplies
Departments of the respective State Governments4. Based on data availability, we con-
sider seven daily food price series from 167 markets across the five regions in India (see,
Figure 1).5,6 To ensure accuracy, we remove ten markets where the series has missing
observations for more than five consecutive days. All the food prices are collected at
retail level to ensure that pass-through of the pandemic to household welfare is captured.

For each price series, we calculate the daily Prt as the national average of all market
prices weighted by market population, where the population weights are the Year 2000
population count extracted from the Gridded Population of the World (GPWv4) dataset
at 0.5 degree resolution (CIESIN 2018). The weighted construction allows us to account
for possible heteroskedasticity in the data. Besides, the use of population as weight helps
ensure that pass-through of the COVID-19 shock funnels directly to the economy. We
transformed the nominal prices (in local currencies - Indian rupee (INR)) to their day-
on-day (DoD) logarithmic values to ease the interpretation of the impulse-responses in
percentage terms.7

3.1.2 COVID-19 Data

We draw Indian COVID-19 data from COVID-19 Data Repository by the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University.8 Among other
country-level variables, the dataset contains the daily count of covid cases from January
30, 2020 and is updated daily as new information becomes available.9 Our sample,

4The Price Monitoring Division (PMD) in the Department of Consumer Affairs is responsible for
monitoring the prices of selected essential commodities. The activities of the division include monitoring
of the retail and wholesale prices, and spot and future prices of selected essential commodities on a daily
basis and are reported on this website https://fcainfoweb.nic.in/reports/report_menu_web.aspx

5The five regions in India are North, West, East, South, and North-Eastern regions. See Table 4 in
the Appendix for the number of markets per region.

6We consider seven food prices: rice, wheat, sugar, milk, tomato, groundnut oil, and onion.
7As most developing nations, India does not have up-to-date daily official exchange rate (local con-

version units per US$), hence the use of prices in local currency as done in other studies (e.g., Dillon &
Barrett (2015), Minot (2014)).

8Data is accessible via https://github.com/CSSEGISandData/COVID-19
9The first case of COVID-19 in India was reported on January 30, 2020 in the state of Kerala.
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Note: Each dark shade represents a local market where data for all the food commodities are
collected.

Figure 1: Food Market Locations across India
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however, ends on June 30, 2021. The dataset is obtained from daily officially reported
confirmed case counts reported to the Ministry of Health and Family Welfare in India.10

To account for the pandemic’s progress, we use the growth rate of covid infection
(GRI) in Carleton et al. (2020) as

GRIt = log(Ct)− log(Ct−1)

where C t refers to cumulative covid cases in India at time t. GRIt measures the rate
at which infection is transmitted amongst the populace. In principle, Ct − Ct−1 refers
to the number of new covid cases in the last one day.11 Our decision to use growth rate
rather than case count is due to policy preference. Growth rate is one of the main metrics
policymakers monitor to make decisions on policy direction. The use of growth rate rather
than covid count is based on policy preference, as the former is one of the main metrics
which policymakers use to decide what sort of policy to adopt (UK Government 2020).

3.2 Model Specification

Let Prt be designated as the measure of food prices in time t, and allow it to follow
a simple linear AR model augmented with weekly dummy variables and GRI entering as
an exogenous forcing variable:

Prt = α′xt + εt (1)

where xt = (1, P ricet−1, ..., P ricet−p, GRIt, ..., GRIt−q, , w1,t, ..., wn,t)
′, wj,t, j = 1, ..., n are

deterministic variables, which include weekly dummies; α are estimable set of parame-
ters, and εt is white noise process. Since the procedures for testing structural instability
in the subsequent steps are sensitive to residual serial correlation, we control for autocor-
relation in εt by following a bottom-up sequential investigatory approach to determine p.
Furthermore, the choice of q is determined by sample-size-corrected Akaike information
criterion (AICc).

Following, we conduct unit roots tests since the structural instability test and the use
of TVAR model require stationary time series. The ADF and KPSS tests in Table 3 in
the Appendix show that most prices series follow a unit root process (I(1)).12 Moreover,

10The national figure here is the aggregation of reported confirmed cases in the states.
11Several papers, such as Emediegwu (2021), Chernozhukov et al. (2021), use a longer lag period to

account for the period between when an infection occurs and when a positive test detects it. However,
Emediegwu (2021), Carleton et al. (2020) show that there is no significant difference in the number of
lags. Moreover, there is no unanimity on the number of lag days to use in calculating growth rate. Also,
with the advancement in medical science and technology, positive tests can be detected within a day of
contracting the virus.

12As shown in Table 3, the result holds for both without and with trend.
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we also employ the Zivot– Andrews (ZA) test, which allows for a structural break in the
time series while testing for unit roots. The ZA test is necessary because the ADF and
KPSS tests assume away nonlinearity and structural break in the series, which may not
be the case. Although results from the ZA test are largely similar to those from the
previous tests, still, there are few series are I(0) which previously followed a unit root
process. It is important to note, as stated in Haldrup et al. (2013), that even the ZA
test does not address all the challenges of unit root test in the presence of nonlinearity
and structural breaks: hence our decision rule is to model a price series in levels if any
of the three unit root tests reject the null hypothesis of unit root. Otherwise, the series
are difference stationary. To avoid the bad control scenario and in the spirit of Angrist &
Pischke (2008), Hsiang et al. (2013), we do not control for factors (e.g., daily oil prices)
that may be jointly correlated with food prices and covid infection rates.

We also adopt Lundbergh et al. (2003) testing approach to ascertain the presence or
otherwise of parameter constancy in the model.13 Where the test fails to reject the null
hypothesis of parameter constancy, an AR model (as in equation 1) is estimated. On the
other hand, where the test rejects the null hypothesis of parameter constancy, we will
estimate a TVAR model presented below:

Prt = α′
0xt(1− L(t̄, ψϑ, ϑ)) +α′

1xtL(t̄, ψϑ, ϑ) (2)

where L(t̄, ψϑ, ϑ) is a transition function (hereafter abbreviated as L(t̄)) with t̄ as the
state (transition) variable that regulates transition by determining the state of nature
at time t. ψ is the smoothness (or speed-of-adjustment) parameter that governs the
occurrence of structural shifts, and ϑ denotes the location parameter, which reflects the
period in time when the parameter instability in the price series set in. Other variables
and parameters are as defined in equation (1).

Based on data, the transition function can either take a logistic (LTVAR) or expo-
nential (ETVAR) function of t̄ = t/T written as

LLTV AR(t̄, ψϑ, ϑ) = [1 + exp{−ψ(
t̄− ϑ
σt̄

)}]−1, ψ > 0; ϑ ∈ [τt̄, 1− τt̄] (3)

LETV AR(t̄, ψϑ, ϑ) = 1− exp{−ψ(
t̄− ϑ
σt̄

)2} ψ > 0; ϑ ∈ [τt̄, 1− τt̄] (4)

where σt̄ is the standard deviation of t̄; the restriction ψ > 0 is an identification restriction;
τt̄ is the truncation factor normally pegged at the 15th and 25th percentile of the transition

13The approach in Lundbergh et al. (2003) is similar to that in Teräsvirta (1994) for testing the
presence of nonlinearity in a smooth transition autoregressive (STAR) model. The main difference
between the STAR model and the TVAR model is that the transition variable in the former is either an
exogenous variable or a lagged endogenous variable, while the transition variable in the latter is a function
of time. More technical details of the difference between both models are documented in Van Dijk et al.
(2002).
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variable in the (3) and (4), respectively. We standardize ψ by σt̄ to render the smoothness
parameter unit-free.14 Depending on the value ψ, in the logistic function, the TVAR
model can reduce to certain sub-models. For example, as ψ becomes larger, the logistic
function L(t̄, ψϑ, ϑ) approximates into a dummy function, I[t̄ > ϑ] where the transition
between pre- and post-structural change becomes sharp rather than smooth. In such as
scenario, (3) and (2) reduces to a two-regime threshold autoregressive (TAR) model. On
the other extreme, as ψ → 0, LLTV AR(t̄, ψϑ, ϑ) → 0.5, and in the limit, (2) reduces to a
linear AR model.

Furthermore, we constrict the slope parameters η, between 2 and 100, and between
one and ten in the logistic and exponential functions, respectively.15 Finally, the empirical
strategy permits the impact of the pandemic to be transmitted into food prices dynamics
in India. Finally, we estimate the parameters of the TVAR model via nonlinear least
squares (NLS) as described in Lundbergh et al. (2003).16

4 Results and Discussion

4.1 Parameter Constancy Tests and Diagnostics

The main results, together with the maximum number of lags and the delay parameter
of the preferred model for each price series, are recorded in Table 1. The results show that
parameter stability is rejected against (2) for rice, wheat, milk, and sugar. The results
show that tomato, onion, and groundnut oil prices are not affected by the pandemic
but rather by past prices. However, while onion and groundnut prices are affected by
past prices linearly, tomato prices are affected nonlinearly by its past prices. Rice and
wheat prices series preferred the ETVAR to LTVAR; the reverse is the case for the other
nonlinear price series. In general, we find that prices of perishable food products do not
experience structural instability due to the pandemic, while storable food products show
parameter instability over the period under consideration. One intuition coming from
this result is that these massive price changes due to the pandemic are human-driven
rather than production-driven. Agents hoard non-perishable goods to create some form
of artificial scarcity during lockdowns in a bid to jack up prices. This result is qualitatively
similar to what is gotten using mortality rate instead of infection rate as shown in Table

14Standardizing the smoothness parameter is an important process to avoid certain estimation prob-
lems like overestimation and slow convergence (Van Dijk et al. 2002).

15Where the slope value is greater than the upper bound, a TAR model will result.
16Lundbergh et al. (2003) expanded Teräsvirta (1994) STAR approach to allow for time-varying

parameters.
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Table 1: Model Choice and Investigation

Series Model p q n ψ̂ϑ ϑ̂ Associated date of
structural change t/T

AICc

Rice ETVARDL 7 7 44 10.00
(2.87)

0.59
(0.01)

November 30, 2020 -1.816

Wheat ETVARDL 7 6 44 6.45
(1.20)

0.54
(0.01)

November 5, 2020 -1.034

Sugar LTVARDL 5 0 26 2.00
(1.04)

0.44
(0.08)

September 14, 2020 -4.833

Milk LTVARDL 8 1 34 50.95
(90.35)

0.70
(0.01)

January 26, 2021 -3.260

Tomato LTVAR 2 18 100.00
(327.78)

0.31
(0.01)

July 10, 2020 -0.473

Onion AR 1 7 -1.240
Groundnut oil AR 8 14 -2.717

Note: p and q are the selected autoregressive and distributed lag lengths, respectively; w and n denote the delay parameter
of the transition function used to test for regime-dependency and number of estimated parameters; ψ̂ϑ and ϑ̂ respectively,
represent estimated speed-of-adjustment and location parameters (values in parenthesis are standard errors).

Table 2: Model and Residual Diagnostics

Series Model pPC pRA pARCH Nσ̂2
ε SP SK EK

Rice ETVARDL 0.72 0.30 0.06 0.21 3.39× 10−07 -0.04 1.4
Wheat ETVARDL 0.01 0.59 0.75 0.46 1.39× 10−10 -0.29 1.87
Sugar LTVARDL 0.56 0.08 0.31 0.00 6.57× 10−07 0.53 1.25
Milk LTVARDL 0.26 0.07 0.25 0.05 2.57× 10−05 -0.04 1.23
Tomato LTVAR 0.06 0.11 0.07 0.46 3.39× 10−11 0.02 3.39
Groundnut oil AR 0.08 0.67 0.25 0.05 4.64× 10−10 -0.34 2.95
Onion AR 0.17 0.83 0.06 0.21 5.22× 10−09 0.48 2.75

Note: pPC , pRA, pARCH represent the probabilities associated with hypothesis of (no remaining) parameter
constancy, residual autocorrelation, and autoregressive conditional heteroskedasticity, respectively. σ̂ε and
is residual standard deviation, N is sample size, SP is the p-value of the Shapiro test for normality of
residuals, SK and EK are skewness and excess kurtosis, respectively.

5.17,18

Table 1 also shows the character of the transition function variables. The estimated
location parameter, ϑ̂, reflects the period in time when the parameter instability in the
price series set in. On the other side, the estimated speed-of-adjustment parameter, ψ̂ϑ.
dictates the time frame for the parameter change. For further insight, Figure 2 reveals the
estimated transition functions for the time-varying models, assuming values close to unity
after the occurrence of the alteration of the price dynamics. Specifically, the transition
function of time suggests that the structural change is centered around November 2020
for rice; and wheat, earlier for sugar and tomato, and later for milk. These periods are
domiciled within the first wave era, indicating that the food market had begun to experi-
ence some structural shocks, even before the commencement of the second wave in March
2021. Further, the values of the speed-of-adjustment parameters, ψ̂ϑ in Table 1 reveal
that these changes are not smooth (with exception of wheat and sugar prices) but abrupt.
However, the change is completed before the end of the sample period, as shown in Figure

17Data for Indian covid mortality is obtained from the same source as covid cases (see, Subsection
3.1).

18In similar fashion as GRI, the growth rate of mortality is derived as log(Dt)− log(Dt−1), where D t
refers to cumulative covid deaths in India at time t.
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2. Following the insignificant estimates of some ψ̂ϑ, we investigate the diagnostics. Table
2 reveals that the conventional diagnostics for checking the appropriateness of a TVAR
model design are in order. For example, the associated p-values indicate no remaining
parameter constancy, residual autocorrelation, or neglected heteroskedasticity.19

Figure 3 showcases further gains of nonlinear models by comparing the residuals from
the estimated nonlinear model and those from the linear model used for parameter con-
stancy testing. The benefits from the nonlinear models are mostly evidence after a major
spike in infection rate, such as the second wave era of March 2021; otherwise, benefits
from fitting the time-varying models seem to be slight.

4.2 Generalized Impulse Response Function (GIRF)

It is elusive to attempt to interpret the estimated parameters of a time-varying model
(except the transition function parameters), therefore we turn to the dynamic charac-
teristics to better appreciate the models. We employ the generalized impulse response
functions (GIRFs), developed in Koop et al. (1996) and the methods in Lundbergh et al.
(2003) to investigate the dynamic behavior of the models over time.20,21 For a given
shock st = Γ and history Ψt−1 = λt−1, we define GI as

GIPr(h,Γ, λt−1) = E(Prt+h|λt = Γ, Ψt−1 = λt−1)− E(Prt+h|Ψt−1 = λt−1) (5)

where h = 0, 1, ..., 30 (number of days in a typical month). We generate two sets of
histories λt−1 (without replacement), periods before and after the structural change in
each price series, numbering 100 for each history to control for asymmetry. For each
history, 100 initial shocks are randomly drawn from a normal distribution bounded by
0.5σ̂Γ and 1.5σ̂Γ, where σ̂Γ is the estimated standard deviation of the residuals from the
TVARmodel. For each set of history and initial shock, we compute 2500 replicates of a 31-
step iterative forecast sequence with and without the initial shock in the first horizon and
employing randomly drawn residuals from the estimated TVAR model as noise elsewhere.
For each horizon, the conditional expectations of the price models with and without the
initial shock are generated from the 2500 replicates. Hence a GIR estimate is derived
as a difference of the two averages, as shown in equation (5). Besides, since food price
series are modeled as I(1) series, we integrate the GIRs over the length of the horizon to

19Computational details of these diagnostic terms, in a nonlinear context, are documented in Van Dijk
et al. (2002)

20We follow similar computational steps in generating the GIRFs as reported in Lundbergh et al.
(2003) and Ubilava (2017)

21The use of GIRFs is occasioned by the invariance of nonlinear models to idiosyncratic shocks that
may affect the underlying dynamics of a stochastic process. Consequently, the conventional extrapolation
means of generating impulse-response functions (IRFs) for linear models is inapplicable in this case.
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Note: The figure showcases natural log of food price series, plus their associated
estimated transition functions. The solid grey lines represent the series, while the
dotted line denotes the time-varying transition function over time.

Figure 2: Observed Values and Transition Function Versus Time
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Note: The selected autoregressive and distributed lag lengths for each country model are found in Table 1.

Figure 3: Residuals of estimated TVAR(DL) models and corresponding linear
AR(DL) model
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estimate the effect of GRI on log-levels of food prices as shown:

GIPr(h,Γ, λt−1) =
h∑

f=0

GI∆Pr(f,Γ, λt−1) (6)

Finally, we use 50%, 75%, and 90% highest-density regions (HDRs), generated using the
density quantile method described in Hyndman (1995, 1996) to showcase a graphical
representation of the GIRFs distributions graphically.

Figure 4 presents the estimated GIRFs of the time-varying models. It shows price
dynamics before and after the estimated structural change. It is important to state that
we concern ourselves with “unconditional” GIRFs based on all histories before/after the
structural change. The Figure highlights that the effect of the shock on most food prices
in India that follow nonlinear processes is stronger pre-structural change (upper panel)
than post-structural change (lower panel), while the reverse is the case for milk prices.
These uneven HDR shapes justify the existence of asymmetry between the pre- and post-
structural change eras in some food prices. On the other hand, this asymmetry is not
observed for sugar prices as the shock’s effect is equally dispersed.

Further, the effect of shock is both amplified and early in several price series. For
example, the impact of the shock on wheat prices is felt immediately but after almost a
week (7 days) for rice prices. Likewise, it is felt immediately after a post-structural change
shock to milk prices. However, the impacts are persistent for some prices pre-structural
change (e.g., rice and wheat prices) as they do not appear to fade out at the end of the
history length. On the other hand, the effect of a one-standard-deviation positive shock
tends to return to zero after the initial impact following a shock in pre-structural change
period (except sugar).

5 Conclusion

This study applies the time-varying approach to assess the effect of COVID-19 on
food prices in India. Specifically, we consider the prices of seven food categories. Our
findings suggest that the pandemic has no impact on the prices of tomatoes, onions, and
groundnut oil but resulted in instability in the prices of rice, wheat, milk, and sugar.
Overall, we find that prices of perishable food products do not experience structural
instability due to the pandemic, while storable food products show parameter instability
over the period under consideration. A plausible explanation for this result is that the
sizable price changes experienced during the pandemic may have been driven by human
factors, especially hoarding of non-perishable commodities, rather than actual production
shortages. Our results are robust to the specification using mortality rate rather than
infection rate.
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Note: The Figure features 50% (dark), 75% (fair) and 90% (light) highest density regions (HDRs) for generalized

impulse response functions (GIRFs) in the TVAR models. The GIRFs in each plot are associated with an average

1-standard deviation shock before (upper panel) and after (lower panel) the respective estimated structural change.

Figure 4: GIRFs of Time-Varying Models of Food Prices
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The findings in this research will help policymakers in India and other nations with
similar economic and political structures to have adequate tools to work with when deter-
mining how pandemics affect food prices. The detailed number of price series considered
offers a microscopic view of how important food prices in India are affected by the COVID-
19 incidence: hence, decision-making can be more commodity-centric. Further, our work
provides evidence that a “one-jacket” solution may not fit all in response to global shocks.
A detailed work like this is necessary to help relevant stakeholders understand how the
recent pandemic affects individual food prices. Such understanding becomes relevant in
preparedness for future pandemics and in managing food security.

While this paper contributes to the literature on food price dynamics, certain caveats
are noteworthy. First, food classes that are not affected by the COVID-19 pandemic do
not imply stable prices. It only means that the pandemic does not affect them in any
significant manner. For example, while we argue that the COVID-19 pandemic does not
impact the prices of tomatoes and onions, these prices might exhibit some instability in
the face of daily weather shocks. The above scenario is one way of saying “no one jacket
fits it all” as no one cause can fully explain all the dramatic changes in local (and global)
food prices behavior. The trends and activities we see are caused by interaction and
interruption of several factors. While disentangling the individual effects of each channel
is problematic, it will be a profitable venture to investigate which drivers are more active
in determining food price fluctuation in India. For example, the principal drivers affecting
the price of rice might be different from that of milk. This disparity in driving forces
could be an interesting area for further research.
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A Additional Tables

Table 3: Unit Root Tests of log prices

ADF KPSS Z-A

No Trend Trend No Trend Trend No Trend Trend

Levels
Rice -0.600 -2.724 4.613 0.786 -4.537 -5.016
Wheat -1.188 -2.618 4.220 0.528 -3.731 -4.377
Groundnut oil 4.757 0.775 3.527 1.181 -0.941 -2.110
Sugar -2.045 -2.062 1.749 0.852 -5.697 -5.925
Tomato -3.992 -3.976 0.141 0.120 -4.457 -5.074
Milk 0.632 -1.227 4.507 1.016 -3.063 -3.916
Onion -3.532 -3.729 0.867 0.132 -4.335 -4.546

First difference
Rice -13.505 -13.500 0.021 0.021 -13.606 -13.622
Wheat -13.986 -13.983 0.017 0.017 -14.133 -14.135
Groundnut oil -11.118 -12.569 1.256 0.014 -12.704 -12.709
Sugar -5.764 -5.783 0.106 0.085 -15.117 -15.117
Tomato -6.233 -6.242 0.057 0.034 -6.504 -6.579
Milk -13.846 -15.353 0.056 0.016 -15.528 -15.615
Onion -5.673 -5.676 0.050 0.041 -6.509 -6.619

CV -2.863 -3.412 0.463 0.146 -4.930 -5.080

Notes: All tests were conducted at levels and with a constant term. The choice of the lag lengths is based
on Akaike Information Criteria (AIC) for the ADF and Z–A tests, while the bandwidths in the KPSS
test were determined using the Newey-West method. Critical values (CV) at 5% significance level for
the ADF test is based upon MacKinnon (1996); the values for the KPSS test are from Kwiatkowski et al.
(1992); and critical values for Z–A are based on Zivot & Andrews (2002).
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Table 4: Summary of Sampled Markets
Region No of markets

North 36
West 32
East 39
South 40
North-East 10

Total 157
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Table 5: Model Choice and Investigation - Mortality Rate

Series Model p q n ψ̂ϑ ϑ̂ AICc

Rice AR 7 20 -1.831
Wheat ETVAR 7 44 1.00

(0.33)
0.40
(0.02)

-1.049

Sugar LTVARDL 4 0 38 26.51
(49.49)

0.59
(0.02)

-4.878

Milk LTVAR 5 38 100.00
(204.48)

0.68
(0.01)

-3.284

Tomato LTVARDL 12 0 54 2,02
(1.46)

0.15
(0.21)

-0.518

Onion AR 1 14 -1.260
Groundnut oil AR 8 21 -2.759

Note: p and q are the selected autoregressive and distributed lag lengths, respectively; w and n
denote the delay parameter of the transition function used to test for regime-dependency and number
of estimated parameters; ψ̂ϑ and ϑ̂ respectively, represent estimated speed-of-adjustment and location
parameters (values in parenthesis are standard errors).
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