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1 Background and Motivation

As climate models project warmer and more variable futures, studies revealing its

socio-economic impacts, including the adverse effects on the agricultural sector under

different scenarios, have been accumulating (Chen and Gong, 2021; Lobell et al., 2008;

Hsiang et al., 2017; Costinot et al., 2016; Schlenker and Roberts, 2009; Chen et al.,

2016). This calls for improving farmers’ adaptive capacity and a better understanding

of their adaptation techniques. Particularly, understanding how farmers respond to

shocks that occur close to the planting season provides valuable information to design

policies that enhance adaptive capacity and prevent long-lasting welfare losses (Jagnani

et al., 2021; Ramsey et al., 2020).

This being the case, the great bulk of existing studies concentrates on farmers’ re-

sponses to climate knowledge acquired over the long term. Since the majority of

farm management decisions are made based on weather expectations before the ac-

tual events are realized, and because such subjective predictions are heavily influenced

by prior weather experience, investigating the role of climate knowledge gained over

time provides valuable inputs for policy formulations. However, both economics and

psychology literature (e.g., Ji and Cobourn (2021); Camerer and Loewenstein (2011))

argue that recent realizations of an event can have a disproportionately larger influence

on expectations. As a result, understanding how farmers react to short-term weather

variability is essential to thoroughly understand the nexus between weather variability

and farmers’ adaptation strategies.

A few recent empirical studies have looked at farmers’ responses to short-term weather

variability. Jagnani et al. (2021) show that Kenyan farmers adjust their input use deci-

sions in response to temperature variations that happened during the initial cropping

cycle. Relatedly, Cui and Xie (2022) show farmers in China adjust their planting dates

based on weather conditions realized eight weeks before the actual planting period. We

aim to contribute to this growing area of research by providing the first causal estimate

on the impacts of initial planting season weather patternson land allocation decisions.
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Specifically, by disaggregating the climate variables into initial planting and planting

stages of the crop growing cycles, we analyze to what extent smallholder farmers in

Ethiopia adjust land allocation decisions in response to plausibly exogenous tempera-

ture variation realized before the actual planting time.

Ethiopia provides an appealing setting for this research. Weather variability is a

recurring phenomenon in the country, and rain-fed agricultural activities constitute

the single most important source of income for virtually all households residing in

rural areas of the country. As a result, rural livelihoods in the country are highly

vulnerable to weather fluctuations. The availability of one of the world’s largest yearly

detailed agricultural surveys also presents a unique opportunity. Specifically, we use

Ethiopia’s Annual Agricultural Sample Survey that covers entire farming communities

of the country.

In the literature, numerous studies investigate the role of weather variability on land

allocation decisions. Among them, He and Chen (2022), Morton et al. (2006), Zaveri

et al. (2020), Li et al. (2013), Mu et al. (2018), Zaveri et al. (2020) and Lungarska and

Chakir (2018) explain how the share of cropland, forest, and grazing land vary due to

weather variability. Though these studies provide pertinent information regarding the

role of weather patterns on land allocation decisions, they defined land-use decisions

broadly by aggregating land covered by all crop types as a single variable. However,

since each crop has its unique optimal heat and moisture requirement, the impacts

of weather variability might be disproportionately stronger for some crops and might

encourage farmers to reallocate resources to crops that suit better current weather

conditions (Arora et al., 2020).

Among crop-specific studies, Cui (2020) discover that growing season climate change,

measured by historical data over the past 30 years, significantly affects land alloca-

tion decisions of maize farmers of the United States. However, Cui (2020) reflects

farmers’ reactions to long-term climate change rather than weather variability that

occurred around the planting seasons. Miao et al. (2015) demonstrate how exces-

sive rainfall during planting season discourages farmers in the United States from
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growing maize. Other studies like Seo and Mendelsohn (2008), Kurukulasuriya and

Mendelsohn (2008), and Moniruzzaman (2015) explore the relationship between crop

choice and climatic variables by relying on cross-sectional data. However, results from

cross-sectional analyses are vulnerable to omitted variable bias and do not permit es-

tablishing a causal link between weather variability and agricultural outcomes (Blanc

and Schlenker, 2017).1

We contribute to the literature in the following aspects. First, we provide a causal

estimate of the impact of temperature variation realized before the actual planting

time on land allocation decisions by focusing on maize-producing smallholder farmers

in Ethiopia. We combine village-level panel data from more than 36,000 farmers gath-

ered over seven years with high-resolution weather data to obtain accurate weather

variability indicators that are comparable across time and space. Second, we investi-

gate the role of the natural endowment on farmers’ adaptation decisions. Geographical

factors like environmental suitability for a given crop could have a differential impact

on farmers’ adaptation strategies. For example, if maize is the best crop for a spe-

cific region, producers may choose to use modern technology such as drought-resistant

varieties rather than abandon the crop during unfavorable weather conditions. Drier

conditions during the planting seasons might also lead to the expansion of drought-

tolerant crops such as maize into less suitable areas. On the other hand, areas that

are more suitable for maize production may not have additional land that has to be

converted into maize production if they have already allocated their land for maize pro-

duction. We examine if farmers’ response to within-growing season weather variability

depends on the suitability of the fields for maize production using the FAO-GAEZ suit-

ability database that reports the productivity potential of a given area for different

crops.

To causally identify the impacts of the initial growing season weather variability, our

1In addition to studies that investigate the role of weather variability on land allocation decisions,
some studies have also looked at the role of the price (e.g.: Haile et al. (2014, 2016); Hendricks et al.
(2014)), access to insurance (e.g.: Wu (1999); Yu et al. (2018)), competition with other enterprises
(e.g.: Wang et al. (2020); Li et al. (2019); Gardebroek et al. (2017); Motamed et al. (2016)) and
access to irrigation water ( Manning et al. (2017); Taraz (2017)).
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identification strategy makes use of an exogenous year-to-year weather variation within

rural villages. Our identification is plausible because farm households are not expected

to precisely predict weather conditions for the upcoming growing season across time

and space (Deschênes and Greenstone, 2007; Burke and Emerick, 2016).

Our results show that farmers adjust their land allocation decisions due to within grow-

ing season weather variability. More specifically, we document that after absorbing the

effects of village level fixed effects as well as time-varying region level characteristic

along with other factors, a 1◦C in the pre-planting season increases the size of land

allocated to maize production by 14.8 percent. To the best of our knowledge, this

adaptation margin of adjustment to initial growing season weather variability has not

been documented before. We show that a portion of the increase in the size of land

allocated to maize production is achieved by replacing other crops. We also present

suggestive evidence that shows the presence of weather variability-induced expansion

of maize production into areas that are less suitable for maize production. To guaran-

tee the robustness of our findings, we run them through a variety of tests. We confirm

that the findings are not confounded by the previous year’s growing season weather

conditions or own price. We also employed a spatial panel data model to account for

geographical and temporal effects.

The remaining sections of the paper are organized as follows. Section two discusses

the socioeconomic importance of maize in Ethiopia and the mechanisms through which

weather variability affects maize production and farmers’ resource allocation decisions.

A detailed description of the sources and types of data used in the analysis are pre-

sented in section three. The fourth section discusses the methodological strategy em-

ployed in the study. The fifth section presents and discusses the findings of the study,

and the final section concludes.

2 Profile of Maize in Ethiopia

Maize is one of the dominant crops in Ethiopia both in terms of production volume

and the number of farmers engaged in cultivating it. Recent figures from the Central
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Statistics Agency of Ethiopia (CSA) show that out of 15.05 million cereal-farming

households in the country, 10.57 million grow maize on 2.1 million hectares of land.

The crop accounts for one-third of the overall grain production in the country (Central

Statistical Agency of Ethiopia, 2019, 2018). Estimates also show that smallholder

farmers in the country allocate at least half of their farmland to maize production in

major growing areas (Ertiro et al., 2019). As shown in figure 1, maize is produced

in wider regions of the country. Its adaptability, the growing demand for strove, and

ability to give more calories and food per cultivated land2 are some of the reasons that

have contributed to its popularity in the country (Abate et al., 2015).

FAOSTAT shows that maize production in the country increased five-folds between

1993 and 2018. The country has relatively good productivity records compared with

the averages of Africa in general and Eastern Africa in particular (Figure 2). However,

the productivity gap between Ethiopia and the global average or other country groups

is very high. Low levels of technology adoption, poor access to input and financial

markets, and frequent weather variability are among the main factors for such low

productivity levels (Marenya et al., 2020; Kassie et al., 2018; Croppenstedt et al.,

2003).

Though maize is considered a suitable crop for warmer conditions, several studies show

that the crop is also sensitive to water shortage and heat stress (Srivastava et al., 2018;

Schlenker and Roberts, 2009; Lobell et al., 2011). Lobell et al. (2011), for instance,

shows that a one degree Celsius of warming in Africa will result in a significant yield

loss for 65 percent of maize-growing areas in the continent, even under optimal rain-fed

conditions.3

The effects of weather variability on maize productivity depend on timing and intensity.

For instance, Seyoum et al. (2017) show that drought that occurred in the early stages

2The daily per capita fat, calories, and Protein contribution of maize in the Ethiopian diet have
already reached 1.31g, 398kcal, and 9.2g, respectively FAOSTAT (2020)

3Surprisingly, Deschênes and Greenstone (2007) found that short-run weather variability has no
significant impact on both agricultural yield and farm profit in the United States. However, Fisher
et al. (2012) revealed that this unexpected finding is primarily due to data management and estimating
errors, and after correcting these flaws, they discovered a negative relationship between climatic
variability and agriculture using the same dataset.
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reduces yield by up to 80%, whereas the yield reduction associated with droughts that

began after the flowering period is about 10%. This is partly associated with the fact

that high temperatures during the early stages affect kernel development by limiting

the number and size of endosperm cells. Likewise, adverse weather conditions during

the seedling and vegetative stages can also affect maize growth by limiting growth

rate, delaying canopy closure, and reducing soil shading (Commuri and Jones, 2001;

Engelen-Eigles et al., 2000).

3 Data

The study compiles datasets from different sources: The Annual Agricultural Sample

Survey of the Central Statistics Agency of Ethiopia (CSA), the Land Suitability Index

from the FAO-GAEZ database, and weather data from various sources.

The study uses Ethiopia’s Annual Agricultural Sample Survey (AgSS) as the main

source for the outcome and control variables, which is an annual agricultural sample

survey that covers over 36,000 private farm holders, making it one of the world’s

largest annual agricultural surveys (Mann et al., 2019). The AgSS data collection

process involves a stratified two-stage sampling technique. In the first stage, around

2000 enumeration areas (EAs) are selected using sampling probability proportional to

the number of farm households obtained from the most recent Population and Housing

Census Frame that exists in the country. This stage is followed by the selection of about

20 agricultural households from each sample EA using random sampling. Starting from

2010, CSA has adjusted its sample selection process. Accordingly, the same EAs are

used in each consecutive survey year, but households are re-sampled every year. Using

this opportunity, a panel dataset is constructed by aggregating values at the EA level.

This created a balanced panel sample comprising 1,815 EAs over the period 2010-16.4

Figure 1 depicts the location of the study villages. Figure 3 depicts the location of the

study villages (EAs).

4Detailed sampling procedure can be found on the agency’s website at http://www.

statsethiopia.gov.et/
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Figure 1: Location of the sampled areas
Note: The survey covers all parts of the country except some parts of Afar and
Somali regional states, which are located in the northeast and southeast of the

country. Households in the excluded area are pastoralists and they do not have a
sedentary way of life.

The main variables of interest for this study is temperature. Daily temperature data

is obtained from the ERA-Interim Reanalysis archive.5 The data set has a 0.25x0.25

degree resolution. From the the daily temperature observations, aggregate weather

indicators are constructed for two stages of the crop growth cycle for each survey

period. The two stages are (1) the planting and fertilizer application period, which

covers 60 days after the beginning of the planting date, and (2) the initial planting

stages (or pre-planting period), which accounts for the land preparation period and

covers 60 days before the planting days.6 The two stages are constructed based on the

crop-planting calendar accessed from the Nelson Institute for Environmental Studies

of the University of Wisconsin-Madison (Sacks et al., 2010).

5Meteorological data can also be accessed from the Ethiopian Meteorological Service. However,
the number of missing observations or values reported as zero on days when no records are made
creates a significant empirical problem(Colmer, 2019). In particular, since the construction of our
weather variables requires daily records, a complete list of observations is essential.

6The stages are constructed following earlier studies like Jagnani et al. (2021).
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To investigate the role of land suitability for maize production on farmers’ responses

to weather variability, we utilize the FAO-GAEZ dataset.7 FAO-GAEZ calculates the

suitability of a given field for a particular crop by predicting the maximum attain-

able yields using agronomic models and three main inputs. These inputs are (1) crop

attributes (mainly estimated through field experiments), (2) physical attributes (in-

cluding soil characteristics, elevation, and land gradient), and (3) assumptions about

the level of modern inputs utilization. We use the maize suitability index constructed

for rain-fed farming with the assumption of low inputs utilization. Figure 2 presents

the index extracted for Ethiopia. By taking the national average production potential

as a threshold, we categorize EAs into two groups: suitable and less suitable EAs.

Table A1 provides the descriptive statistics for the potential yields along with other

working variables.

Figure 2: Maize production capacity: Source FAO/IIASA
.

7The FAO-GAEZ is also used by Bustos et al. (2016); Nunn and Qian (2011) and Costinot et al.
(2016).
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4 Estimation Strategy

The following panel fixed effects estimation is used to causally identify how temper-

ature variation realized prior to normal planting time influences actual agricultural

land allocation decisions:

Yrdvt = βi[Temp]pprdvt + γi[Temp]ptrdvt + θXrdvt + αv + φrt + εrdvt (1)

Yrdvt is the dependent variable that represents the size of cultivated land covered by

maize (in hectare) in a given region r, district d, village v, and time t. Temp stands for

average daily temperature in a given season measured in ◦C (We also use alternative

definitions as a robustness exercise). The superscript pp and pt represent pre-planting

(initial) and planting seasons, respectively. β is our parameters of interest. αv controls

for village fixed effects and φrt accounts for unobservables that vary across regions over

time and are expected to absorb the effects of any shock that is explicit to a given

region in any given year. X stands for EA-level time-varying controls (e.g., EA level

averages of the ages of the household heads, family size, access to credit, level of

irrigation utilization, and oxen size). Rainfall conditions around the planting period

are undoubtedly among the most crucial factors expected to influence farmers’ resource

allocation decisions in countries like Ethiopia, where the vast majority of farmers do

not have access to irrigation. Hence, we control rainfall using data accessed from

the Climate Hazards Group InfraRed Precipitation Station (CHIRPS) (Funk et al.,

2015). The dataset has 0.25x0.25 degree resolution. We follow the recommendations

of related studies (e.g., Fishman (2016); Kassie et al. (2014) and Lobell and Asseng

(2017)) and used Wet Days Frequency to control both the amount and distribution of

rainfall.

We also investigate whether the effect of weather variability on land allocated for

maize is realized through substitution with other crops. This is done by examining

the effects of within-growing season weather variability on land allocated to maize

relative to another crop. This helps to understand how weather variability affects
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the comparative advantage of maize compared with other crops (Cui, 2020). The

regression equation used to address this objective is given in equation 2.

(
LM

LM + LO

)rdvt = = βi[Temp]pprdvt + γi[Temp]ptrdvt + θXrdvt + αv + φrt + εrdvt (2)

where LM and LO stand for the size of land allocated for maize and a specific alternative

crop, respectively. We focus on major crops (e.g., barley, teff, wheat, etc. as shown in

Table A1 and 6). All remaining variables and other terms follow equation 3.

In estimating the above equations, there could be spatial interactions across neighbor-

ing locations of the study area, and failing to account for such interactions may lead to

biased and inconsistent estimates (LeSage, 1997; Fisher et al., 2012).8 For instance, the

land allocation decisions of neighboring EAs (our dependent variable) could spatially

be correlated since they might share similar geographic attributes (like soil fertility

status) and input and output markets.9 Similarly, the extrapolation techniques used

to generate gridded and reanalyzed climate data can create a spatial correlation be-

tween the climate variables (our independent variables) (Auffhammer et al., 2013).

Studies also show that rainfall at a given location could be correlated with rainfall

received in the neighboring areas (Maccini and Yang, 2009). Spatial correlation might

also arise due to spatial correlation of the error terms due to confounding variables in

omitted climatic measures (Auffhammer and Schlenker, 2014).

In principle, the empirical model has to control for spatial interactions from all three

sources (dependent and independent variables and error terms) to produce unbiased

and consistent estimates. However, the problem of over-fitting makes it difficult to use

models that can effectively control the interactions from the three sources in applied

research (Elhorst et al., 2014). Studies such as Elhorst et al. (2014); Harari and

Ferrara (2018), and Mamo et al. (2019) argue that the parameters of the spatial model

can be identified without facing the problem of over-fitting by controlling for spatial

correlation in the independent and dependent variable using the Spatial Durbin Model

8The possible sources of interactions are interactions in one or a combination of the dependent
variables, regressors, or error terms across locations (Anselin, 2001).

9This fact is empirically verified by Miao et al. (2015).
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(SDM) and by accounting for spatial dependence in the error term through clustering

the standard errors. Hence, as a robustness check, we use Stata’s xsmle package

produced by Belotti et al. (2017) to estimate the impacts of temperature variation on

land allocation decision using the Spatial Durbin Model.

5 Results and Discussion

5.1 The effects of growing season weather variability on the

size of land allocated for maize production

Table 1 presents the estimated effects of average temperature realized during eight

weeks before the planting season. As seen in column 1, temperature in the initial

growing season have a significant impact on farmers’ land allocation decisions. More

specifically, it shows that after absorbing the effects of EA fixed effects as well as time-

varying region level characteristic along with other factors, a 1◦C in the pre-planting

period increases the size of land allocated to maize production by 14.8 percent. Related

studies like He and Chen (2022) and Miao et al. (2015) show that farmers modify their

land allocation decisions based on the planting season weather conditions. As a result,

we re-estimate the impacts by adding the average daily temperature of the growing

season as an additional regressor to see if the estimated effect of the pre-planting

weather condition is absorbing the effects of growing season weather conditions. As

shown in column B of the table, the effects of pre-planting season temperature remain

statistically significant affect controlling the growing season average temperature.

The relation between higher temperature levels and maize production could be be-

cause of the nature of the crop. Maize is considered a drought-tolerant crop. Warming

temperatures are expected to boost staple crop production, including maize, by fa-

cilitating photosynthetic processes (Jagnani et al., 2021). Furthermore, as shown in

Figures 3 and 4, the average daily temperatures in the study area throughout the

study period were mostly within the range over which maize yields generally increased

as temperatures rose (Lobell et al., 2011). Studies like Seo and Mendelsohn (2008)
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Table 1: Estimated Impacts of Average Temperature on Maize Land Allocation

VARIABLES Maize land (log) Maize land (log)

Temp Pre-Planting 0.148*** 0.140***
(0.037) (0.041)

Temp Planting -0.031
(0.038)

Rainfall control Yes Yes
Other control Yes Yes
Region year fixed effects Yes Yes
EA fixed effect Yes Yes
Observations 12,705 12,705
R-squared 0.864 0.865

Note: The table presents the effects of within growing season weather conditions (cap-
tured by average daily temperature) on agricultural land allocation decisions. The depen-
dent variable is the log value of land under maize crop. Temp: average daily temperature;
EA-level controls included in the analysis are the age of the household head, family size,
number of oxen owned, and access to credit, extension service, and irrigation. we use Wet
Days Frequency to control both the amount and distribution of rainfall in both seasons.
Standard errors clustered at district level in parentheses; *** p<0.01.

and Wang et al. (2010) also show that farmers tend to grow maize as temperatures

get warm.

The other reason for this relationship might be linked with the recent progress made

in improving the accessibility of drought-tolerant maize varieties in the country. For

instance, as of 2016, about 9000 tons of certified drought-resistant maize variety, known

as BH66110 was distributed in the country and the seed had covered 18 percent of maize

land in the country (Ertiro et al., 2019).

5.2 Robustness checks

5.2.1 Incorporating additional controls

In this subsection, we examine the robustness of the results presented in Table 1 by

incorporating past weather variables and own price.

Because most farm management decisions are made based on expectations about fu-

10The cultivation of the BH661 variety for commercial farming is officially approved by the National
Variety Release Standing Committee in 2011.
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ture weather conditions, past weather conditions substantially influence farmers’ de-

cisions. Studies like Ji and Cobourn (2021) show that land allocation decisions of

farm households are affected by the lagged weather condition. Hence, a robustness

check is conducted to check whether the results could be confounded by the previous

year’s growing season weather conditions. Column (1) of Table 2 provides the result

estimated by including one year lagged planting season weather patterns.

Table 2: Robustness of the Result: Additional Controls

(1) (2) (3)

VARIABLES Maize land (log) Maize land (log) Maize land (log)

Temp Pre-Planting 0.192*** 0.126*** 0.141***
(0.042) (0.041) (0.041)

Lagged Temp Planting Yes No No
Lagged average price No Yes No
Future price No No Yes
Other controls Yes Yes Yes
Region year fixed effects Yes Yes Yes
Planting season Temp Yes Yes Yes
Rainfall control Yes Yes Yes
Constant -10.55*** -3.950*** -2.868***

(1.315) (1.008) (1.014)
Observations 12,705 12,705 12,705
R-squared 0.872 0.865 0.865

Note: the dependent variable is the log value of land under maize crop. Standard errors
clustered at district level in parentheses; See notes under Table 1 for additional informa-
tion such as the list of control variables. *** p<0.01.

In the main results presented in Table 1, the region year interactions are used to

control price effects at the regional level. Here, the strength of the results is tested by

incorporating own price measured from the nearest market. Among existing studies

that estimated the effects of price on land allocation decisions, Chavas and Holt (1990)

and Lee and Helmberger (1985) used one-year lagged prices, whereas Lin and Dismukes

(2007) relied on future prices. The consistency of the result is tested by incorporating

both one-year lagged and future prices. Columns (2) and (3) of Table 2 present the

results.11 As shown in the Table, the results of the main regression equation remains

11The average lagged and future prices are calculated at the closest market using monthly food
price data obtained from the market monitory survey of the WFP. The price data is accessed from
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qualitatively identical in all robustness checking exercises.

5.2.2 Alternative temperature measures

Different temperature metrics may indicate different elements of climate impacts and

relying just on average temperatures may overlook other factors Cui and Xie (2022).

For example, degree days, which are a measure of cumulative heat, have been used

by both agronomic and economic literature (e.g., Lobell et al. (2011); Schlenker and

Roberts (2009); Schlenker et al. (2006)) to illustrate the link between temperature and

agricultural productivity. Even though we are not directly analyzing the impacts on

agricultural productivity, we use degree days as an alternative indicator for a robust-

ness test. GDD is calculated as the intensity of daily exposure to a defined upper and

lower temperature ranges at which heat and cold stresses are expected to begin and

impede plant growth (Roberts et al., 2013). Related works consider 8◦C and 30◦C

as the lower and upper thresholds in calculating GDD. Table 3 shows the estimated

effects of degree days on farmers’ land allocation decisions. We show qualitatively

identical result with the results of the main regression equation, and the size of the

effects is not significantly different. The result shows that each additional degree day

equates to a 14% increase in the size of land dedicated to maize farming. We also

present additional robustness test results in the appendix (Table A2-A4) that include

changing the definitions of our main working variables.

5.2.3 Accounting for spatial interactions

As we discussed in the methodology section of this paper, failing to account for spatial

interactions properly can lead to biased estimates. As a result, we use the spatial panel

regression model to evaluate the effects of pre-planting season weather conditions on

land allocation decisions in our next robustness check. The results are presented in

Table 4. As can be seen from the Table, the findings of the main regression equation

remain qualitatively unaffected.

https://dataviz.vam.wfp.org/economic_explorer/prices
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Table 3: Robustness of the Result: Alternative Weather Definition

VARIABLES Maize land (log)

GDD Pre-Planting 0.141***
(0.040)

GDD Plant Yes
Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Observations 12,705
R-squared 0.865

Note: the dependent variable is the log value of land under maize crop. GDD: Degree
days computed by considering 8◦C and 30◦C as the lower and upper thresholds. For
comparison, we used daily averages of Degree days; Standard errors clustered at district
level in parentheses; See notes under Table 1 for additional information such as the list
of control variables. *** p<0.01.

Table 4: Robustness of the result: Accounting for the Spatial Interactions

VARIABLES Maize land (log)

Temp Pre-planting 0.190***
(0.046)

Temp Planting Yes
Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Observations 12,705

Note: the dependent variable is the log value of land under maize crop. We use Stata’s
xsmle package produced by Belotti et al. (2017) to obtain the estimates of the above
Spatial Durbin Model. Standard errors clustered at district level in parentheses; See
notes under Table 1 for additional information such as the list of control variables. ***
p<0.01.
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5.2.4 Falsification test

We used a falsification test to see if the impacts of pre-planting temperature variation

on land allocation decisions are masked by time-varying unobservables. We follow

Sesmero et al. (2018) and re-estimate our main model by changing the timing of

weather data. Accordingly, we re-estimate Table-1 by replacing our pre-planting season

temperature with future planting season temperatures (by one wave). If mismatched

weather data fails to explain the land allocation decision, it suggests that unobserved

factors are unlikely to confound the effect of pre-planting weather conditions reported

in our main result. As shown in Table 5, the coefficient of the mismatched weather

variable is not statistically significant.

Table 5: Robustness of the Result: Placebo Regression

VARIABLES Maize land (log)

fTemp Plant -0.043
(0.030)

Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Observations 12,705

Note: The table presents the effects of future average temperature (fTemp plant) on
agricultural land allocation decisions. The dependent variable is the log value of land
under maize crop. Standard errors clustered at district level in parentheses; See notes
under Table 1 for additional information such as the list of control variables.

5.3 Weather variability and crop substitutions

After examining the effects of pre-planting weather conditions on maize growers’ land

allocation decisions, we fit equation (2) to see if crop substitution effects partially

explain the change in the size of maize fields. The findings indicate the presence

of crop substitution effects caused by within-growing season weather variability. It

shows that higher temperatures during the initial planting period increase the share of

land covered by maize relative to other alternative crops such as barley, sorghum, teff

and oilseed (Table 6). It is worth emphasizing that if changes in the growing season
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weather patterns affect both maize and the alternative crops to a similar extent, no

effect would be observed.

Among existing studies, Cui (2020) shows that a 0.1◦C increase in past temperature

increases land allocated to maize and soybean by up to three percent relative to wheat,

while the work of Wang et al. (2010) showed that warm temperature encourages maize

production but discourages the production of soybeans and vegetables.

Table 6: Effect of Weather Variability on Crop Substitution

VARIABLES Barley Sorghum Teff Wheat Pulse Oilseed

Temp Pre-Planting 0.015** 0.016* 0.017*** 0.008 -0.006 0.0193**
(0.006) (0.008) (0.007) (0.007) (0.008) (0.009)

Temp Planting Yes Yes Yes Yes Yes Yes
Rainfall control Yes Yes Yes Yes Yes Yes
Other control Yes Yes Yes Yes Yes Yes
Region year fixed effects Yes Yes Yes Yes Yes Yes
EA fixed effect Yes Yes Yes Yes Yes Yes
Observations 12,705 12,705 12,705 12,705 12,705 12,705
R-squared 0.823 0.744 0.810 0.848 0.838 0.703

Note: The dependent variables are the share of land covered by maize relative to the
alternative crops. Standard errors clustered at district level in parentheses; See notes
under Table 1 for the list of other control variables. *** p<0.01, ** p<0.05, * p<0.1.

5.4 Heterogeneous effects based on soil suitability

The result of the heterogeneous effects of land suitability on farmers’ responsiveness to

pre-planting season weather conditions is presented in Table 7. The result shows that

adjusting the size of land allocated to maize production due to pre-planting season

weather variability is more pronounced in areas that are less suitable for maize pro-

duction. This could be due to the fact that areas better suited for maize cultivation

may not have more land available for conversion to maize production if the land has

already been allocated for maize production. Another explanation could be that as

a result of drier conditions, farmers may move to the production of drought-tolerant

crops like maize, which could lead to the expansion of maize in less suitable areas.

However, it is also worth noting that classifying a given area as less suitable for maize

production does not imply that maize has lesser comparative advantages in that par-
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ticular area. It can also imply that the field is less fertile for other types of crops as

well.

The study demonstrates the feasibility of expanding maize production into new areas

to adapt to changing weather patterns. A recent study by Sloat et al. (2020) shows

how rain-fed maize production migrated to areas that were not major produces due to

climate change. Similarly, Skarbø and VanderMolen (2016) document the expansion

of maize production practices towards higher altitudes due to climate change.

Table 7: Heterogonous Effect Based on Land Suitability

VARIABLES Maize land (log) Maize land (log)

Temp Pre-Planting 0.159*** 0.149***
(0.0397) (0.0433)

Suitable for maize #Temp Pre-Planting -0.0224 -0.0185
(0.0415) (0.0414)

Temp Planting No Yes
Rainfall control Yes Yes
Other control Yes Yes
Region year fixed effects Yes Yes
EA fixed effect Yes Yes
Constant -4.072*** -3.207***

(0.751) (0.945)
Observations 12,705 12,705
R-squared 0.864 0.865

Note: The dependent variables are the share of land covered by maize relative to the
alternative crops. Standard errors clustered at district level in parentheses; See notes
under Table 1 for the list of other control variables. *** p<0.01, ** p<0.05, * p<0.1.

6 Conclusion

The recent literature on the impacts of climate change and weather variability on

agriculture predominately focuses on estimating the impacts on crop yields, and many

of them have documented adverse effects. Another popular research theme within

climate economics literature is the study of farmers’ adaptation to climate change.

This paper contributes to this strand of the literature by examining the effects of

within-growing season weather pattern changes on land allocation decisions of farmers
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by focusing on Ethiopian maize producers.

Our results demonstrate that farmers promptly adjust their land allocation decisions

to adapt to within-growing season weather variability. More precisely, we show that

initial growing season drier conditions encourage maize production. The results also

reveal that the increase in the size of land allocated to maize production is partly

achieved through substitution with other crops. We also provide suggestive evidence

that shows the presence of weather variability-induced expansion of maize production

into areas less suitable for maize production. The findings of the study have several

policy implications.

By estimating the effects of within-growing season weather variability on farm house-

holds’ land allocation decisions, we have documented a notable adaptation margin

that has been overlooked in the previous studies. The findings highlight the impor-

tance of including short-run responses in climate change research. Hence, the results

help to better understand the impacts of climate change and variability on agricul-

tural output and the effectiveness of adaptation investments because neglecting such

adaptation margins could lead to biased estimates.

It is also vital to underscore the fact that farm households’ decision to expand maize

production to confront dryness might be at the cost of crop rotation. Studies show

that crop rotations improve farm profit by reducing crop losses due to disease and

pests and maintaining soil fertility (Cai et al., 2013). In addition, the expansion of

maize into less suitable areas might have implications for farm productivity. As a

result, future research may look at the effects of such adaptation strategies on farm

productivity and profitability.

Improving the accessibility of micronutrient-rich foods by diversifying farm production

has recently drawn attention to achieve food and nutrition security (Sanchez et al.,

2020; Poole et al., 2021). Hence, as land reallocation changes the amount of land

devoted to a particular crop, it can have an implication on the type and amount of

food produced and supplied to the market. Notably, for developing countries like
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Ethiopia, where a significant share of food mainly comes from domestic production

with little import, weather variability-induced reallocation of land can dictate the

types and amount of food that is available and accessible for the population. As a

result, the substitution of cash crops by staple crops like maize to withstand weather

variability might have implications for farm households’ market participation and diet

quality. This might underscore the importance of investing in the production and

distribution of drought-resistant seeds for high-value crops.
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Figure 1: Maize Production areas in Ethiopia: Source FAO/IIASA

Figure 2: Maize Production in Ethiopia. Harvested production per unit of harvested
land measured in hectograms per hectare (hg/ha) on the y-axis. Source FAOSTAT

25



Figure 3: Average daily temperature
during pre-planting

Figure 4: Average daily temperature
during planting

Table A1: Summary statistics of working variables

Variables Mean Std.Dev.

Sex of the household head (male=1; female=0) 0.805 0.114
Age of the household head 43.392 5.319
Family size 5.192 0.837
Number of oxen owned 0.870 0.688
Access to credit (Yes=1; No=0) 0.181 0.237
Size of cultivated land under agricultural extension(ha) 0.586 0.493
Size of cropped land with access to irrigation(ha) 1.225 7.992
Average temperature during pp season 18.747 2.071
Wet day frequency during PP 1.589 2.207
Average temperature during planting season 21.062 2.506
Wet day frequency during planting season 12.198 9.430
Commutative heat degree days during PP season 637.036 122.706
Commutative heat degree days during planting season 786.270 134.753
Size of cultivated land covered by maize (ha) 6.689 12.984
Size of cultivated land covered barley 3.204 10.364
Size of cultivated land covered sorghum 6.512 15.573
Size of cultivated land covered teff 9.292 20.229
Size of cultivated land covered wheat 4.996 14.058
Size of cultivated land covered pulse 6.265 12.247
Size of cultivated land covered Oil-seed 2.583 9.520

Source: AgSS, 2010-16 and FAO/IIASA. Values are aggregated at EA level
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Table A2: Estimated impacts based on alternative weather definition: Number of
degree days

VARIABLES Maize land (log)

Number of days in pre-planting within GDD ranges 0.179***
(0.0434)

Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Constant -12.67***

(2.601)
Observations 12,705
R-squared 0.865

Note: The table presents the effects of temperature using alternative definitions (captured
via the number of days above 8◦C and below 30◦C temperature thresholds) on agricultural
land allocation decisions. The dependent variable is the log value of land under maize
crop. Standard errors are in parentheses, clustered by district level. Standard errors
clustered at district level in parentheses; *** p<0.01.

Table A3: Estimated impacts based on alternative weather definition: change in degree
day threshold

VARIABLES Maize land (log)

GDD Pre-planting 0.141***
(0.0403)

GDD Plant Yes
Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Observations 12,705
R-squared 0.865

Note: The table presents the effects of temperature using alternative definitions (captured
via degree days computed using 10◦C and 30◦C as the lower and upper thresholds in
calculating GDD) on agricultural land allocation decisions. The dependent variable is
the log value of land under maize crop. Standard errors are in parentheses, clustered by
district level. Standard errors clustered at district level in parentheses; *** p<0.01.

Note:
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Table A4: Estimated Impacts of Weather Variability on Maize Land Allocation: in-
verse hyperbolic sine

VARIABLES Maize land (log)

Temp Pre-Planting 0.0854***
(0.0234)

Temp Planting Yes
Rainfall control Yes
Other control Yes
Region year fixed effects Yes
EA fixed effect Yes
Constant -1.054**

(0.483)
Observations 12,705
R-squared 0.882

Note: Note:The table presents the effects of within growing season weather conditions
on agricultural land allocation decisions. An inverse hyperbolic sine transformed the
dependent variable (the size of land covered by maize) is used. The model includes village
fixed effects as well as the interaction between regions dummy and year. Standard errors
clustered at district level in parentheses; *** p<0.01, ** p<0.05.
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