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Abstract 

Existing empirical literature on crop production in Ukraine mainly focuses on productivity, 

economic and technical efficiency measures. However, there has been limited evidence on how 

crop producers perform from an environmental perspective. This study provides the first 

attempt to empirically estimate the level of eco-efficiency in crop production using farm-level 

panel data from Ukraine. To address the research question, the hyperbolic environmental 

technology distance function methodology is employed. Our preliminary results suggest that 

the average environmental technical efficiency for crop producers in Ukraine is 0.72 over the 

period 2017-2019. This provides a piece of evidence that a reasonable percentage of crop 

producers have wide room for improving their environmental performance. Assessing the eco-

performance of Ukrainian crop farmers can be relevant for the policy-makers given the growing 

interest towards a sustainable Ukrainian agricultural sector in view of increasing environmental 

pressures. 
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1 Introduction 

The agricultural sector in Ukraine contributes noticeably to the country’s economy by being the 

third most important sector, after industry and trade, by the share of gross value added in GDP. 

It also accounts for almost two-fifth of Ukrainian exports (SSSU1, 2020). At the same time, 

agriculture is among the top five sectors of the Ukrainian economy adding to the N2O emissions 

of the country (SSSU, 2018). The agricultural sector, in general, produces along with desirable 

outputs (crop output in this study) also undesirable ones (such as GHG emissions, pollution 

from applied chemical fertilizers and pesticides etc.), and they should be both considered in the 

assessment of the sector’s performance. Our focus is on crop production since it accounts for 

more than three-quarters of Ukrainian agricultural output value (SSSU, 2020). 

                                                           
1 SSSU – State statistics service of Ukraine, agricultural products accounted for 38% of total export value in 2020 
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Among the main sources of pollution that come as the environmentally undesirable output of 

crop production is the extensive application of inorganic fertilizers, especially the uncontrolled 

use of low-quality fertilizers, that results in N2O emissions and contamination of soil and 

groundwater (in the case of positive nitrogen and phosphorus balances). The compound annual 

growth rate of inorganic fertilizers use per hectare in Ukraine was 12% in the last 20 years 

(Figure 1). 

 

Figure 1. Application of inorganic fertilizers in Ukraine in the last 20 years 

Source: Author’s presentation based on SSSU data 

 

In the light of the growing level of pollution and environmental pressures in Ukraine amplified 

by changing climate conditions, Ukraine adopted Environmental Security and Climate 

Adaptation Strategy until 20302. One of the expected results of its implementation is increasing 

the efficiency of the state system of environmental impact assessment. Ukraine is also 

committed to achieving SDG goals that include, among others, promoting sustainable 

agriculture (Goal 2). 

The abovementioned recent developments have heightened the need for empirical research 

aimed to measure negative agricultural externalities and incorporate them in the evaluation of 

production performance. Results of such research can inform policy-making in the field of 

proper management of environmentally undesirable outputs (Mamardashvili et al., 2016). A 

specific challenging feature of bad outputs is that, unlike desirable ones, their economic values 

are unknown and are farmers often do not consider them when making their production 

decisions (Adenuga et al., 2019). 

 

Given the currently available empirical literature, there are virtually no empirical studies that 

aim to measure the eco-performance of agricultural production in Ukraine. So far, the literature 

                                                           
2 https://www.kmu.gov.ua/en/news/uhvaleno-strategiyu-ekologichnoyi-bezpeki-ta-adaptaciyi-

do-zmini-klimatu-do-2030-roku 
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has placed focus upon the economic and social aspects of the agricultural sector performance 

in Ukraine (Lissitsa and Odening, 2005; Balmann et al., 2013; Graubner and Ostapchuk, 2018).  

In this paper, our objective is to estimate the level of environmental efficiency of crop producers 

in Ukraine. Among environmentally undesirable outputs, we consider greenhouse emissions 

which accompany the application of mineral fertilizers and fuels usage. We employ the 

parametric hyperbolic environmental technology distance function approach in a stochastic 

frontier framework with farm-level panel data to analyze the environmental performance of 

crop producers in Ukraine. 

Since up to now, far too little attention has been paid to environmental aspects of agricultural 

production in Ukraine, this research can contribute to the existing literature by providing the 

first attempt to shed light on whether and how eco-efficient crop farms in Ukraine might be. 

The remaining part of the paper is organized as follows: in section 2, we review relevant 

empirical literature. We provide a detailed description of the data and empirical specification 

of the model in section 3, while in section 4, the preliminary estimation results are outlined. 

Finally, we conclude in section 5 by providing an overview of the study findings alongside 

relevant policy recommendations. 

 

2 Literature review 

The generation of undesirable by-products is embedded in many production processes. 

Agricultural production is not an exception. In case proper inclusion of bad outputs in the 

analysis is disregarded, this not only precludes from crediting farms’ productivity and 

efficiency for a ceteris paribus reduction in undesirable outputs but also questions the reliability 

of the estimates of a desirable production (Kumbhakar and Malikov, 2018). 

Among approaches to modelling bad outputs, a few categories can be distinguished. They 

include are a multi-equation representation of polluting technology and an alternative single-

equation specification of the production process in the presence of bad outputs (Kumbhakar 

and Malikov, 2018). Formalization of the pollution-generating technology under the single-

equation approach is usually in the form of distance functions. The existing empirical literature 

suggests various types of them. They include the radial input or output distance functions, the 

directional output distance function and the hyperbolic distance function. The main features of 

these distance functions are outlined in Table 1. 

 

Table 1. Most widely used distance functions 

Distance function Description 

Radial output/input  treats desirable and undesirable outputs symmetrically 

Directional enable the expansion of desirable 

output and contraction of 

undesirable output simultaneously 

makes use of the translation 

homogeneity property 

Hyperbolic 
is based on the multiplicative 

homogeneity property 

Source: Based on Adenuga et al. (2020) 

There are two ways of estimating distance functions: non-parametric and parametric. Both 

techniques have their advantages and limitations (Appendix 1). In particular, the non-



parametric approach (Data Envelopment Analysis) does not require the specification of a 

functional form that allows avoiding confounding the effects of misspecification of the 

functional form with those of inefficiency. However, this technique is sensitive to extreme 

values and inference is not possible without bootstrapping (Adenuga et al., 2018). At the same 

time parametric approach, namely stochastic frontier analysis (SFA) attempts to distinguish the 

effects of noise from those of inefficiency, thereby providing the basis for statistical inference 

(Bravo-Ureta et al., 2015). However, since SFA requires the specification of a functional form 

for the production technology, its results might be affected by possible misspecification of the 

functional form. Thus, basically, the limitations of the parametric approach are the advantages 

of non-parametric and vice versa. 

Selected parametric approaches used in the empirical literature to account for undesirable 

outputs are presented in Appendix 2. Among them, the application of the hyperbolic distance 

function approach has been popular in recent years, including in the field of agricultural 

economics (Table 2). In our study, we also adopted the parametric hyperbolic distance function 

with a flexible translog functional form. 

 

Table 2. Studies that employed the hyperbolic distance function in agricultural economics  

Study Application 

Suta, Bailey, and 

Davidova (2010)  

used the hyperbolic distance function approach to estimate the 

environmental technical efficiency scores of selected EU farms 

Mamardashvili, 

Emvalomatis, and Jan 

(2016)  

applied the hyperbolic distance function to assess the environmental 

performance of conventional and organic Swiss dairy farms using cross-

sectional data; estimated the shadow price of nitrogen surplus  

Rosano-Peña et al. 

(2018)  

showed the possibility of producing more with less environmental impact 

and less use of resources in the agriculture of the municipalities comprising 

the Brazilian Amazon biome employing the parametric hyperbolic distance 

function approach 

Skevas et al. (2018) 

used the hyperbolic distance function approach to analyze and evaluate the 

impact of policies and intensification on the environmental performance of 

Dutch dairy farms in the period 2001–2010 

Adenuga et al. (2019) 

Applied a parametric hyperbolic technology distance function approach to 

estimate environmental efficiency in dairy farms, calculated pollution costs 

of nitrogen surplus 

Adenuga et al. (2020) 

analyzed the environmental technical efficiency and shadow price of 

phosphorus surplus in dairy farms employing the hyperbolic environmental 

technology distance function in a stochastic frontier analysis framework. 

Source: Based on Adenuga et al. (2020) 

 

3 Data and empirical specification of the model 

To address the research question, we use recent farm-level accounting and crop production data 

collected by the State Statistics Service of Ukraine (SSSU). These are panel data covering crop 

production of agricultural producers in the period of 2017-2019. We create a balanced panel 

with a focus on the production of cereals (including wheat, barley, maize and others) and 

sunflower, which are major crops in terms of sowing land and output shares (Figure 1). 



 

Figure 1. Structure of agricultural output in Ukraine in 2020 

Source: Author’s presentation based on SSSU data 

 

Production of selected crops is concentrated mainly in the south-eastern part of Ukraine, which 

lies in the steppe agro-climatic zone (Figure 2). This climatic zone is characterized by dry and 

very warm conditions (Graubner and Ostapchuk, 2018). 

 

 

Figure 2. Location of cereals and sunflower production in Ukraine 

Source: Author’s presentation 

 

We estimate crop farms’ environmental efficiency by applying an econometric model based on 

a parametric hyperbolic technology distance function approach, which allows including both 

desirable and undesirable outputs (Mamardashvili et al., 2016, Adenuga et al., 2019). Yields of 

cereals and sunflower enter our analysis as desirable outputs, while greenhouse emissions (N2O 

and CO2 emissions) originating from the application of mineral fertilizers and fuels’ usage are 
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considered undesirable outputs. Selected in our analysis crops, cereals and sunflower, account 

for a noticeable share of total chemical fertilizers application (63% and 21% respectively in 

2020).  

Following Adenuga et al. (2019) the empirical specification of the stochastic hyperbolic 

environmental technology distance function is presented in equation 1. 
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where xj – inputs 

y1,2   - desirable outputs 

bk – undesirable outputs 

zl - additional factors that influence the production process 

i=1,2,..,N represents the observed crop farms in time t=1,2,..,T.  

For variables that contain zero values, inverse hyperbolic sine transformation was used instead 

of logarithmic transformation. 

Coefficients of the hyperbolic output distance function are estimated based on the error 

components frontier model with a Translog specification for the underlying production function 

(Battese & Coelli 1992). We control for additional explanatory variables that influence the 

production frontier, such as climatic variables, irrigation and pesticide practices. The 

conditional distribution of the inefficiency components was obtained following a half-normal 

distribution. In addition, as a robustness check, the model with a Cobb-Douglas specification 

of production function is estimated. The results are presented in Appendix 4. There is a 

considerable difference in the results of the two specifications concerning labour input, 

estimated elasticity doesn’t follow monotonicity condition in a Cobb-Douglas specification. 

Results of the likelihood ratio test (𝜒2=225.37) clearly reject the Cobb-Douglas output distance 

function in favour of the Translog output distance function.  

All output and input variables were scaled by their geometric mean, consequently, the estimated 

first-order parameters can be interpreted as elasticities at the sample mean of the data (Färe et 

al., 2005; Cuesta, et al., 2009). All the variables measured in monetary units are in constant 



prices of 2019. They were corrected for inflation using the appropriate annual producer price 

indices published by the State Statistics Service of Ukraine (SSSU, 2020). The time-variant 

environmental technical efficiency estimates were calculated for each farm by using the point 

estimator proposed by Battese and Coelli (1988) given in equation (2): 

𝐸𝑇𝐸 = 𝐸(𝑒−𝑢𝑖𝑡|𝜀𝑖𝑡) (2) 

 

The variables included in the analysis are selected based on the underlying production process 

of specialized crop farms. The following inputs (xj) are included in the specification of 

hyperbolic environmental technology distance function: 

 

1. sowing land area under cereals and sunflower, 

2. capital measured in terms of depreciation values, 

3. labour measured in the cost of labour services, 

4. variable inputs, which consist of costs of seed, fertilizers, energy and other materials 

 

Regarding outputs, the desirable ones include: 

1. cereals output (y1,   to impose the almost homogeneity condition, it was chosen for 

normalizing), 

2. sunflower output (y2) 

 

While considered undesirable outputs (bk) are 

1. N2O emissions originating from the application of mineral fertilizers  

2. CO2 emissions from fuels’ usage 

 

We made use of emission coefficients to get values for both undesirable outputs. In particular, 

N2O emissions were calculated using equation (3)3: 

𝑁2𝑂 = ∑(𝑞𝑗 ∙ 𝑐𝑗

𝑛

𝑗=0

) ∙ 𝑒 ∙
44

28
 

𝑞𝑗  - quantity of purchased chemical fertilizer of each type 

𝑐𝑗 - percent of nitrogen each type of fertilizer contains  

𝑒 - emission coefficient, which equals 0.0117 tons N2O-N/ton N applied 

44/28 - The molecular weight ratio of N2O to N2O as N (N2O/N2O-N) 

 

For chemical fertilizers, the quantity of nitrogen was found in the commercial product label 

(Appendix 3). When it comes to CO2 emissions, their level was calculated as a product of the 

amount of purchased fuel by type and corresponding emission factor (Appendix 4). 

 

Given that crop production is sensitive to climatic conditions, we control for the mean and 

standard deviation of daily temperature in the district where the farm is located as well as for 

sum and standard deviation of daily precipitation level. Also, our model includes dummies 

                                                           
3 Based on AP 42, Fifth Edition, Volume I Chapter 14: Greenhouse Gas; United States Environmental Protection agency: 

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-14-greenhouse-gas-1 

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-14-greenhouse-gas-1


outlining whether crops are irrigated and whether any type of pesticide, herbicide or insecticide 

(PHI) is used. 

 

Our balanced panel data set consists of 1722 observations for 574 crop producers specializing 

in cereals and sunflower. A summary statistic of the variables included in the model is given in 

Table 3.  

Table 3. Descriptive statistics of the variables included in the model (averages across three years 

period) 

Variables Mean Std. Dev. Min Max 

Desirable outputs 

Сereals output, tonne 2,497.8 4,570.4 15.3 114,079.8 

Sunflower output, tonne 974.8 1,735.2 0.0 25,766.9 

Inputs     

Sowing land, ha 1,027.4 1,164.4 2.0 16,816.5 

Capital, '000 UAH 1,234.4 2,470.7 0.0 29,320.9 

Labor, '000 UAH 1,032.7 1,853.3 0.0 34,511.1 

Variable input, '000 UAH 9,725.0 14,432.1 0.0 217,308.7 

Undesirable outputs 

N2O emissions, tonne 1.6 3.0 0.0 47.0 

CO2 emissions, tonne 54.1 333.7 0.0 12,900.0 

Additional explanatory variables 

Annual mean temperature, °C 8.9 1.8 5.0 13.2 

Annual sd temperature, °C 9.9 1.4 6.8 12.5 

Sum of precipitation, mm 3,847.2 1,591.7 626.9 12,002.8 

Sd of precipitation, mm 4.5 0.9 2.8 7.0 

Irrigation dummy 0.0 0.1 0.0 1.0 

PHI dummy 0.8 0.4 0.0 1.0 

 

4 Empirical Results and Discussion 

Selected parameter estimates and the associated standard errors of the parametric hyperbolic 

distance function model are presented in Table 4 (see Appendix 5 for full results). 

Since the left-side variable in equation (1) has a negative sign, distance elasticities of inputs, 

other output, and undesirable outputs variables in the model possess the expected sign at the 

mean of the data. Negative signs of inputs and the undesirable outputs parameters imply that an 

increase in them makes the farm further away from the production frontier, while a positive 

sign of desirable output parameter means that increase in it, for a given input and undesirable 

output vectors, brings the farm closer to the production frontier (Adenuga et al., 2019). Thus, 

the parameter estimates of the hyperbolic distance function satisfy the monotonicity conditions 

at the sample mean: non-decreasing in desirable outputs and non-increasing in undesirable 

outputs and inputs (Skevas et al., 2018; Cuesta and Zofío, 2005).  

 

 



Table 4. Selected parameter estimates of the hyperbolic environmental technology distance 

function 

Parameter 

Estimate 

(Standard 

error) 

𝛽1 (land) 
-0.872*** 

(0.054) 

𝛽2 (labor) 
-0.004  

(0.064) 

𝛽3(capital) 
-0.081 

 (0.059) 

𝛽4(variable inputs) 
-0.299* 

(0.123) 

𝛾𝑏1 (N2O emissions) 
-0.166*** 

(0.052) 

𝛾𝑏2 (CO2 emissions) 
-0.287*** 

(0.057) 

φ2 (sunflower output) 
0.393*** 

(0.044) 

  

𝑧1 (𝑠𝑢𝑚 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 
0.000***  

(0.000) 

𝑧2 (𝑠𝑑 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 
0.005 

 (0.012) 

𝑧3(𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 
0.094*** 

(0.012) 

𝑧4(𝑠𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 
0.092*** 

(0.016) 

𝑧5(𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦) 
-0.114 

 (0.088) 

𝑧6(𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑠 𝑑𝑢𝑚𝑚𝑦) 
-0.076*** 

(0.023) 

𝑠𝑖𝑔𝑚𝑎𝑆𝑞 
0.257*** 

(0.02) 

𝑔𝑎𝑚𝑚𝑎 
0.783*** 

(0.02) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦   

Mean 

2017 0.730 

2018 0.726 

2019 0.722 

Min 0.156 

Max 0.969 

 

The preliminary results of the analysis showed that the average eco-efficiency estimate of crop 

producers in Ukraine is 0.72, with virtually no variation over the considered years. The 

histogram of the hyperbolic efficiency estimates exhibits a conventional left-skewed pattern 

(Figure 3). There is a quite low level of heterogeneity in environmental technical efficiency 

across crop farms. These estimates imply that, on average, producers of cereals and sunflower 

in Ukraine can improve their production results by increasing crop output by 39% 



(1/0.72=1.388) and simultaneously contracting undesirable outputs by 28% (1-0.72=0.28). 

Additional explanatory factors included in the model, such as mean temperature and total 

precipitation levels, appeared to have a highly statistically significant effect on crop output, 

while the effect of the irrigation dummy is not statistically different from zero. 

 

Figure 3. Distribution of environmental technical efficiency of crop producers 

 

 

5 Summary and Concluding Remarks 

Among outputs of crop production, there are not only desirable such as crop yields, but also 

environmentally undesirable ones such as GHG emissions. Negative agricultural externalities 

are an important, but understudied, cause for concern in Ukraine. This study emphasizes the 

necessity of accounting for both types of outputs when assessing the performance of agricultural 

producers. Thus it aimed to evaluate the environmental performance of crop producers in 

Ukraine. In this study, we used balanced panel data covering the production of two major crops 

(cereals and sunflower) in the period of 2017-2019. This paper contributes to the existing 

literature by providing the first estimates of the eco-efficiency of crop producers in Ukraine. 

The results indicate how (in)efficiently farms are performing, which reflect the maximum 

possible level of desirable outputs and minimum level of bad outputs given the quantities of 

inputs used. Estimated efficiency levels imply that a reasonable percentage of crop producers 

have a wide room for improving their environmental performance.  

The main limitations of this study are, to a great extent, driven by data availability. Firstly, we 

do not account for an important undesirable outputs of crop production, such as nitrogen and 

PHI pollution. This is due to the unavailability of data on the application of organic fertilizers 

that are required for the calculation of nitrogen balance. When it comes to PHI application, data 

contain only aggregated quantities without details on the particular type of pesticide, herbicide 

or insecticide used. Secondly, our panel data is quite short that leads to a lack of dynamic 

perspective and prevents capturing of technical change. Lastly, there are virtually no data on 

potential conventional determinants of inefficiency (such as farm economic size, land type, 

environmental subsidies etc). 



In this context our recommendations are mainly in the field of data collection and addressed to 

the State Statistics Service of Ukraine. To enable robust and comprehensive estimation of the 

environmental performance of agricultural producers, an annual statistical form filled by 

agricultural producers should contain more detailed information on all types of fertilizers and 

pesticides used along with farm characteristics.  

Regarding policy recommendations, to enhance the eco-efficiency of crop producers, it is 

important to restrict amounts of inorganic fertilizers that can be used, establish clear standards 

on the quality of fertilizers that can be applied, and promote the application of organic 

fertilizers. Also, government support of programs for farmers related to improving energy 

savings  (for instance, installing new high-efficiency motors) will help to reduce the amount of 

farm CO2 emissions.  
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Appendices 

A.1 Advantages and limitations of parametric and non-parametric techniques  

Method Main feature Advantage Limitation 

Parametric 

Deterministic 

frontier 

analysis 

Require the 

specification 

of a 

functional 

form for the 

production 

technology 

Assumes that 

any deviations 

from the frontier 

stem from 

inefficiency 

 

Measurement errors, as 

well as other 

sources of random 

variation are captured as 

inefficiency 

Stochastic 

frontier 

analysis 

(SFA) 

incorporates 

statistical 

noise 

Attempts to distinguish the 

effects of noise from those 

of inefficiency, thereby 

providing the basis for 

statistical inference;  

 

Estimation of multi-input 

multi-output models 

employing input and output 

distance functions 

 

Effects of a possible 

misspecification of 

functional form  

Non-

parametric 

Data 

Envelopment 

Analysis 

(DEA) 

Does not require the 

specification of a functional 

form 

Avoids confounding the 

effects of misspecification 

of the functional form with 

those of inefficiency;  

 

Ability to easily 

accommodate multi-input 

multi‐output technologies 

within a primal specification 

 

Is deterministic and thus 

sensitive to extreme 

observations; can be 

sensitive to the number 

of observations in the 

data and to the 

dimensionality of the 

frontier 

Source: Based on Bravo-Ureta et al. (2015) 



 

A.2 Selected parametric approaches used in the empirical literature to account for 

undesirable outputs  

Method Description Reference(s) 

A Parametric 

Hyperbolic 

Technology 

Distance 

Function 

Approach 

The hyperbolic distance function can treat desirable 

and undesirable outputs asymmetrically by seeking to 

simultaneously expand desirable outputs and contract 

undesirable outputs 

Adenuga, Davis, 

Hutchinson, Donnellan, 

Patton (2019) 

 

Mamardashvili, 

Emvalomatis, and Jan 

(2016) 

A panel frontier 

system model 

with good and 

bad outputs and 

endogenous 

treatment 

decision 

 A simultaneous panel stochastic frontier system for 

the production of good and bad outputs when 

inefficiency is present in both;  

 Treatment of bad output is considered when the 

treatment decision is endogenous; 

 Because of simultaneity, inefficiency from the 

production of good (bad) output is transmitted to 

the production of bad (good) output.  

Lai and Kumbhakar 

(2021) 

A Hedonic 

Output Index 

based Approach 

to Modeling 

Polluting 

Technologies 

Technology is modelled by using two functions:  

 an input distance function describing technically 

feasible input-output combinations,  

 and a hedonic output function capturing 

relationships among good and bad outputs. 

Malikov, Bokusheva 

and Kumbhakar (2018) 

 

A.3 Nitrogen content by mineral fertilizers type 

Type of fertilizer % nitrogen 

Nitrogen mineral fertilizers  
ammonium sulfate 21 

ammonium nitrate 35 

urea  46 

ammonium saltpeter 34.4 

liquid ammonium fertilizers 82.3 

ammonia water 20.5 

urea-ammonia mixture 32 

Phosphate mineral fertilizers  
superphosphate granulated with boron 10 

superphosphate simple powder 10 

double granular superphosphate 10 

Complex mineral fertilizers  
amophos 11 

nitroammophoska 16 

nitrophos 9 

fertilizer mixture 13 

ammophosphate 10 

azophos 21 

 

 



A.4 Emission coefficients by fuel type  

Fuel type Initial units Units conversion kgCO2 

Motor gaseline tonne 
1 ton= 31.755 gallon 

1 tonne=35.004 gallon 

8.78 per gallon 

Diesel fuel tonne 10.21 per gallon 

Heavy gas oil tonne 11.09 per gallon 

Petroleum oil hundredweight 
1 hundredweight=0.056 ton 

1 hundredweight=1.778 gallon 
5.68 per gallon 

Coal tonne 1 tonne (metric)=1.10231 short ton 2.819 per short ton 

Natural gas thousand m3 1 m3=35.311 standard cubic foot 0.05444 per scf 

Source: Report of U.S. Environmental Protection Agency 

 

A.5 Parameter estimates of the hyperbolic environmental technology distance function 

for different production technologies  

Parameter 

Estimate 

(Standard error) 

Cobb-

Douglas 
Translog 

𝛽1 (land) 
-0.811*** 

(0.02) 

-0.872*** 

(0.054) 

𝛽2 (capital) 
-0.009*  

(0.005) 

-0.081 

 (0.059)  

𝛽3(labor) 
0.027*** 

(0.008) 

-0.004  

(0.064) 

𝛽4(variable inputs) 
-0.129*** 

(0.016) 

-0.299* 

(0.123) 

𝛾𝑏1 (N2O emissions) 
-0.039*** 

(0.004) 

-0.166*** 

(0.052) 

𝛾𝑏2 (CO2 emissions) 
-0.038*** 

(0.005) 

-0.287*** 

(0.057) 

φ2 (sunflower output) 
0.859*** 

(0.02) 

0.393*** 

(0.044) 

𝛽11 
 

0.041* 

(0.023) 

𝛽22 
 

0.013  

(0.046) 

𝛽33 
 

0.088** 

(0.044) 

𝛽44 
 

0.118 

 (0.133) 

𝛽12  
 

0.012  

(0.032) 

𝛽13  
 

0.003 

 (0.037) 

𝛽14  
 

0.126** 

(0.063) 

𝛽23  
 

0.049 

 (0.031) 

https://www.epa.gov/sites/default/files/2018-03/documents/emission-factors_mar_2018_0.pdf


𝛽24  
 

0.038  

(0.055) 

𝛽34  
 

0.030 

 (0.055) 

φ22 
 

0.157*** 

(0.02) 

𝛾𝑏1𝑏1  
 

-0.068** 

(0.033) 

𝛾𝑏2𝑏2    

0.001  

(0.026) 

𝛾𝑏1𝑏2    

0.028  

(0.019) 

𝛿1𝑏1  
 

0.114*** 

(0.036) 

𝛿2𝑏1  
 

-0.063** 

(0.026) 

𝛿3𝑏1  
 

-0.046* 

(0.024) 

𝛿4𝑏1  
 

0.115** 

(0.055) 

𝛿1𝑏2  
 

-0.019  

(0.038) 

𝛿2𝑏2  
 

-0.002  

(0.029) 

𝛿3𝑏2  
 

-0.024  

(0.025) 

𝛿4𝑏2  
 

-0.030 

 (0.049) 

𝜔1𝑦2  
 

0.011 

 (0.021) 

𝜔2𝑦2 
 

0.009 

 (0.022) 

𝜔3𝑦2 
 

-0.043 

 (0.027) 

𝜔4𝑦2 
 

-0.111** 

(0.047) 

𝜇𝑏1𝑦2 
 

-0.036 

 (0.029) 

𝜇𝑏2𝑦2 
 

0.057* 

 (0.03) 

𝑧1 (𝑠𝑢𝑚 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 
0.000*** 

(0.000) 

0.000***  

(0.000) 

𝑧2 (𝑠𝑑 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 
0.010 

(0.012) 

0.005 

 (0.012) 

𝑧3(𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 
0.113*** 

(0.012) 

0.094*** 

(0.012) 

𝑧4(𝑠𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 
0.116*** 

(0.016) 

0.092*** 

(0.016) 

𝑧5(𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦) 
-0.078 

(0.098) 

-0.114 

 (0.088) 

𝑧6(𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑠 𝑑𝑢𝑚𝑚𝑦) 
-0.023 

(0.025) 

-0.076*** 

(0.023) 



𝑠𝑖𝑔𝑚𝑎𝑆𝑞 
0.326*** 

(0.025) 

0.257*** 

(0.02) 

𝑔𝑎𝑚𝑚𝑎 
0.809*** 

(0.018) 

0.783*** 

(0.02) 

𝑡𝑖𝑚𝑒 
-0.054** 

(0.019) 

-0.019 

 (0.021) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦   

Mean 

2017 0.717 0.730 

2018 0.705 0.726 

2019 0.693 0.722 

Notes: Single, double, and triple asterisks (*,**,***) indicate significance at the 10%, 5% and 

1% level 


