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Adoption of Multiple Soil Fertility Management Practices and Its Impact on 

Farm Performance in Rural China 

Abstract 

The adoption of soil fertility management practices (SFMPs) has become an important issue in the 

development economies, especially as a way to tackle land degradation, erosion, and low 

agricultural productivity. This study analyses the factors that facilitate or impede the probability and 

extent of adoption of multiple SFMPs as well as the performance effects, using farm survey data of 

773 vegetable producers in rural China. Multivariate and ordered probit models are applied to the 

modeling of adoption decisions by farm households facing multiple SFMPs, which can be adopted 

in various combinations. A multinominal endogenous switching regression model is used to 

investigate the impact of SFMP adoption on farm productivity. The results show that: (1) the 

adoption of straw returning and advanced irrigation have substitution effect, and subsoiling practice 

is significantly correlated to straw returning and soil testing; (2) both the probability and the extent 

of adoption of SFMPs are influenced by many factors: household’s education, cadre membership, 

cooperative and training participation, social capital and individual awareness; (3) farms’ 

productivity is increasing with the intensive adoption of SFMPs. These results imply that 

policymakers should seek to promote local institutions and training providers, increase household 

education and awareness, and strengthen social networks in order to improve the adoption of SFMPs. 

 

Keywords: soil fertility management; multivariate probit; multinominal endogenous switching 

regression, simultaneous adoption 
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1. Introduction  

The pressure on land resources in the world is currently enormous, and developing countries in 

particular are facing serious challenges. Soil fertility is a critical solution that involves the soil's 

ability to support plant growth by providing essential nutrients, favorable physical, chemical, and 

biological properties, and a habitat for plant growth. Fertile soils primarily provide food, which is 

crucial to achieving the zero-hunger target set by the FAO, as well as economic implications on 

poverty eradication and economic growth. Soil fertility management practices (SFMPs) were 

primarily brought about in the 1950s by the Green Revolution and developed in the 1980s by the 

International Center for Soil Fertility and Agricultural Development (IFDC) to decrease soil, water, 

and air pollution and promote sustainable ecological development. Nowadays, it was widely 

developed around the world. China, with high population pressure and small landholding per capita, 

has paid much attention in recent years to the adoption of SFMPs to tackle land degradation, erosion, 

and low agricultural productivity.  

 

Farm technical efficiency is a measure of how well farmers use inputs such as labor, capital, and 

land to produce a given output. The impact of SFMPs on farm technical efficiency has been assessed 

in several studies. For example, Geta et al. (2013) used data from 385 randomly selected farmers to 

evaluate the positive and significant impact of integrated soil fertility management on maize 

smallholder productivity and efficiency in southern Ethiopia. Adolwa et al. (2019) used a 

counterfactual model to assess SFMPs' impact on yields and total household incomes using farm 
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household data from Northern Ghana and Western Kenya. Their analyses revealed that ISFM 

adoption led to an increase in maize yields however, did not improve yields. Ngango and Seungjee 

(2021) applied cross-sectional data collected from 360 farmers in Rwanda to analyze the adoption 

of small-scale irrigation technologies and their impact on land productivity and found a significant 

impact by conducting a propensity score matching technique.  

 

Additionally, the adoption of SFMPs has been shown to be influenced by different factors. For 

instance, Martey and Kuwornu (2021) used data covering smallholder farmers in Ghana and found 

that a range of socio-economic and farm-related factors including education, household size, the 

slope of farmland, distance to extension services significantly influenced farmers' adoption of 

SFMPs by using Poisson and Negative Binomial Regression Models. In the research of 360 

smallholder farmers in Rwanda, Ngango and Seungjee (2021) added new evidence that extension 

services and awareness significantly played a role in farmers' adoption of SFMPs. Farm size was 

found to be an important factor that facilitated farmers' adoption of SFMPs by Katengeza et al. 

(2019) in the research of a four-round panel dataset collected from households in six Malawi 

districts over nine years. Considering the policy environment and land quality in different regions, 

research on the adoption of SFMPs needs to be tailored to local conditions. Also, since a lack of 

knowledge, inadequate access to resources and technology, and limited financial capacity, many 

farmers are still relying on conventional farming methods in rural China.  

 

To address these challenges and promote the adoption of sustainable SFMPs, this paper aims to 

explore factors that facilitate or impede the probability and extent of adoption of multiple SFMPs 

as well as the performance effects, using farm survey data of 773 vegetable producers in rural China. 

We include four practices including advanced irrigation, subsoiling, straw returning, and soil testing. 

It is crucial to know the adoption pattern of SFMPs in rural China and if the current SFMPs enhance 

or threaten the productivity of land use. 

 

The contributions of our article to the empirical literature are as follows. First, the adoption of 

multiple SFMPs in the farming context, ranging from livestock to food, is well studied, but research 

on vegetable production is, in general, scarce. This study attempts to close this gap. Second, instead 

of roughly classifying SFMP adopters, we consider the nature of interrelationships among the set of 

practices and jointly analyze farmers’ decision to adopt multiple SFMPs and help policymakers and 

development practitioners to define their strategies for promoting agricultural practices. Third, a 

more specific comparison of technical efficiencies between SFMP adopters of different extents and 

non-adopters provides new evidence for our understanding of the impact of SFMPs on farm 

performance. 

 

2. Soil Fertility Management Practices and theoretical framework 

Of the several SFMPs promoted, we focus on four considering data availability, with each practice 

discussed below. 

 

Irrigation. The technical principle of fertigation is based on the law of vegetable water and fertilizer 

needs, through the drip irrigation method of water and fertilizer evenly, in the right amount, 
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accurately and directly to the surface near the roots of the crop, and then infiltrated to the root system 

area, so that the root system activity area of the soil to maintain the best water and nutrient supply 

state. This practice has cracked the problem of large losses of irrigation water and fertilizer caused 

by the mismatch between water and fertilizer supply and vegetable demand in traditional planting 

methods. 

 

Straw returning. Straw returning to the field is a method of applying straw that is not suitable for 

direct feed into the soil directly or after being piled up and decomposed. After the vegetable stalks 

are crushed and returned to the field, farmers need to sprinkle bacterial fertilizers and bury the 

crushed stalks in the ground through deep plowing. After a period of maturity and decomposition, 

they can be transformed into organic matter and available nutrients to fertilize the soil. This practice 

can not only eliminate the air pollution caused by straw burning but also save human and financial 

resources. 

 

Subsoiling. Subsoiling is a method of deep plowing that loosens the soil without overturning the 

soil layer with loosening tools such as subsoiling shovels or chisel plows. It can thicken the living 

soil layer, increase water permeability, increase soil water storage capacity, reduce surface runoff, 

and save and utilize natural precipitation more. Thickening the living soil layer can also promote 

the development of crop roots and improve soil water use efficiency. This practice is beneficial to 

the gas exchange of the soil, promotes the activation of microorganisms and the decomposition of 

minerals, and improves soil fertility 

 

Soiling testing. The practice of soil testing and formula fertilization aims to address the mismatch 

between the demand for crop fertilizers and the supply of soil fertilizers. It involves targeted 

supplementation of nutrient elements required by crops, including those that are lacking, in order to 

achieve a balanced nutrient supply and meet crop needs. The ultimate goal is to improve fertilizer 

utilization, reduce dosage, and enhance crop yield and quality, while saving labor, reducing costs, 

and increasing income. 

 

Considering the nature of each practice, the adoption of SFMPs could be a technical efficiency 

driver in many aspects: First, SFMPs can also reduce input costs such as fertilizer, pesticides, and 

irrigation. By maintaining soil fertility, the need for costly inputs such as synthetic fertilizers and 

pesticides can be minimized, resulting in lower costs and higher profits. Second, by maintaining soil 

fertility, soil health can also be improved, which leads to better crop growth and reduced crop losses. 

Healthy soils can also improve water retention, which reduces the need for irrigation and saves on 

water costs. Third, SFMPs can improve soil structure, which can reduce erosion and increase soil 

water-holding capacity, leading to more efficient use of resources and a reduction in the need for 

expensive inputs such as irrigation and soil amendments. Fourth, SFMPs can contribute to long-

term sustainability by maintaining soil health and reducing the negative impacts of agriculture on 

the environment, which increases farm productivity and profitability over time. 

 

3. Data 

The data was obtained from the questionnaire survey in Shouguang city of China, located in the 
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coastal plain area of north-central Shandong Province. Shouguang is named "the hometown of 

vegetables in China" by the State Council and has the largest wholesale vegetable production market 

in China. Relying on the superior topography and climate, stable market environment, and 

government support, the introduction and promotion of advanced technologies started in Shouguang. 

The vegetable planting area in Shouguang City has grown to 600,000 mu, with an annual output of 

4.5 million tons, and 78,000 farmers are directly engaged in vegetable production. 

 

We used Probability Proportional Sampling and Random Sampling methods to survey in 2019, that 

is, we randomly selected 6 towns (Figure 1), and then randomly selected a similar number of farmers 

in each town. We had face-to-face interviews with farmers to finish the questionnaire. The contents 

of the questionnaire cover farm income and expenditure, assets, capital, household characteristics, 

and detailed information about production practices. Finally, we got 773 observations which are 

used in this research for analysis. 

 

The variables selection and definition are interpreted in Table 1 including variables in the MVP and 

MESR models. The inclusion of variables in the analysis and model specification is primarily based 

on theoretical frameworks and past empirical adoption literature (Aryal and Holden, 2012; Erenstein 

and Farooq, 2009; Feder and Umali, 1993; Kassam et al., 2009; Kassie et al., 2013; Pender and Kerr, 

1998). A description of explanatory variables and a hypothesis about their effects on the dependent 

variable is given below. 

 

Householder characteristics  

Household characteristics include the major characteristics of the household head (such as literacy 

status, age, and gender), which often influence technology adoption decisions (de Janvry et al., 

1991). Household heads who are literate, with at least a primary education, are more likely to have 

non-farm income and better access to and processing of new information, which enhances their 

ability to acquire, absorb, and adopt new technology (Chander and Thangavelu, 2004). Farm 

technology adoption is typically part of an overall household strategy to improve livelihoods, so the 

literacy status of the household head can affect it. The gender of the household head can also impact 

technology adoption decisions, as men and women may have different preferences for technologies.  

 

Household and farm characteristics 

The adoption of new technology may be hindered by a high dependency ratio as it generally requires 

more active labor inputs. Additionally, farmers with a high number of non-active family members 

may not be able to afford the cost of implementing SFMPs. To account for farm characteristics that 

may influence technology adoption decisions, we control for the factors such as farmland size and 

distance to market. For instance, distant farms may be costly to transport inputs to and difficult to 

monitor, which could make farmers less inclined to adopt new technology. Various studies have 

demonstrated a positive relationship between farmland size and technology adoption since 

households with larger farms can allocate a portion of their land to try out new technology, unlike 

those with smaller farms. Furthermore, some large facility technologies necessitate economies of 

scale to ensure profitability. However, certain studies have indicated that farm size may have a 

negative impact on the adoption of new agricultural technologies, particularly in the case of labor-

intensive or land-saving innovations. As a result, the sign of the coefficient on the farmland size 
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variable is uncertain. 

 

Financial characteristic  

The financial variable in this study includes off-farm income and farmers’ attitudes to their income. 

To account for the impact of off-farm income on the adoption of SFMPs, we considered the primary 

sources of household income, such as working in a factory or a government job. Family size was 

measured by the number of household members. To assess farmers’ attitudes towards their income, 

we created a dummy variable that equals 1 if the household is satisfied with its income and 0 if it is 

not. The adoption of new agricultural technology is influenced by economic incentives, although 

the extent of its impact can be complex and uncertain. Households with alternative sources of 

income may be better able to adopt new technology since they may have better access to information 

about it or the ability to finance investments. Allocating household labor to activities other than 

agriculture, which provide higher returns, may decrease attention paid to agricultural activities, such 

as time and energy. 

 

Information source 

This study considers cooperative membership, training, and internet access as an information source 

that impacts SFMPs adoption. Mostly, cooperatives provide technical training and education that 

can alleviate farmers' information constraints and increase their level of awareness of new 

technologies. Training helps to reduce farmers’ risk expectations and increase their confidence in 

adopting SFMPs in vegetable production. The Internet can reduce farmers' information search costs 

and enable them to access technology information in a timely and convenient manner.  

 

Social capital 

The peer effect is taken as social capital. In a social environment with complex local relationships 

such as rural China, the influence of farmers' social capital on their behavioral decisions is even 

more pronounced. Due to the reciprocal motivation among members, strong ties can reduce the cost 

of acquiring and analyzing information for farmers and provide opportunities for mutual learning, 

communication, and assistance when adopting SFMPs. 

 

Awareness 

The technology acceptance model proposes that adoption behavior and the extent of consumer 

acceptance are influenced by the attitude which includes perceived ease of use and usefulness of a 

technological tool. Since it is commonly assumed in agricultural economic models that farmers 

maximize profits, we take farmers’ attitudes towards the profit of technology adoption to proxy 

usefulness.  

 

4. Methodology 

Farmers face multiple SFMPs which can be adopted in various combinations, and their adoption 

decision is not randomly assigned, which may be influenced by both observed and unobserved 

factors (Dorfman, 1996). To allow for the potential endogeneity associated with unobserved 

heterogeneity and simultaneous adoption decisions, our empirical framework includes three parts: 

first, farmers’ choice of interrelated SFMPs is modeled using a multivariate probit (MVP) model, 
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and the determinants of the extent of combinations of SFMPs adopted are investigated in an ordered 

probit (OP) model. Second, to explore the impact of SFMPs adoption on farm productivity, we apply 

the multinominal endogenous switching regression (MESR) model following Dubin and McFadden 

(1984) and Bourguignon et al. (2007) to correct selection bias, which holds the explanatory variables 

and the error term uncorrelated and lead to unbiased results. In the third stage, we estimate the 

average treatment effect (ATT) of SFMPs adoption on farms’ productivity by comparing the actually 

observed outcomes and their respective counterfactual expected outcomes between non-adopters 

and adopters. 

 

4.1 Multivariate probit model 

When using a single-equation statistical model, the decision to adopt one SFMP does not affect the 

likelihood of adopting another. However, the MVP approach models the impact of a set of 

explanatory variables on each of the different practices simultaneously, while accounting for the 

potential correlation between unobserved disturbances and the relationship between the adoption of 

different practices (Belderbos et al., 2004). We hypothesize that farmers’ decision to adopt these 

SFMPs is interdependent. This hypothesis is valid if the error terms of the multiple decision 

equations are significantly correlated. One potential source of correlation could be complementarity 

(positive correlation) or substitutability (negative correlation) between different practices 

(Belderbos et al., 2004). Failing to account for unobserved factors and interrelationships among 

adoption decisions for different practices can result in biased and inefficient estimates (Greene, 

2008).  

 

The observed outcome of SFMP adoption can be modeled following a random utility formulation. 

Consider the ith farm household (i=1,…, N) facing a decision on whether or not to adopt the available 

SFMP. Let 𝑈0 represent the benefits to the farmer from traditional management practices, and let 

𝑈𝑘 represent the benefit of adopting the kth SFMP: where k denotes choice of irrigation (I), straw 

returning to farm (R), subsoiling (S), and soil testing (T). The farmer decides to adopt the kth SFMP 

if 𝑌𝑘=𝑈𝑘-𝑈0>0. The net benefit (𝑌𝑘) that the farmer derives from the adoption of kth SFMP is a 

latent variable determined by observed household characteristics, other control variables, locational 

dummy variables (Gucheng/Hualong/Luocheng/Sunjji/Tianliu), and the error term: 

𝑌𝑖𝑘 = 𝑋𝑖𝑘
+ 𝑖 (1) 

Using the indicator function, the unobserved preferences in equation (1) translate into the observed 

binary outcome equation for each choice as follows: 

𝑌𝑖𝑘 = {
1, 𝑖𝑓 𝑌𝑖𝑘 > 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

For these SFMPs, we hypothesize that the decisions to adopt them are interdependent. This 

hypothesis is valid if the error terms of the multiple decision equations are significantly correlated. 

In the multivariate model, where the adoption of several SFMPs is possible, the error terms jointly 

follow a multivariate normal distribution (MVN) with zero conditional mean and variance 

normalized to unity (for identification of the parameters) where: (uI; uS; uR; uT): MVN (0; ) and 

the symmetric covariance matrix  is given by: 
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The off-diagonal elements in the covariance matrix, which represent the unobserved correlation 

between the stochastic components of various SFMP types, are of particular interest. This 

assumption generates an MVP model that jointly represents decisions to adopt a particular farming 

practice. The specification with non-zero off-diagonal elements allows for correlation across the 

error terms of multiple latent equations, representing unobserved characteristics affecting the 

adoption of alternative SFMPs. 

 

4.2 Ordered probit model 

In addition to the probability of adopting SFMPs, it is important to consider the level of adaptation 

of these practices. Following D'Souza et al. (1993) and Wollni et al. (2010), we use the number of 

SFMPs adopted as our dependent variable to measure the extent of adoption. The ordered probit 

model allows to examine the factors that influence the adoption of a combination of practices 

(number of practices), as well as individual practice. Additionally, the variables that affect the 

probability of adoption may have different effects on the intensity of adoption. 

 

We assume that the ith farm household decides to choose several SFMPs based on the maximization 

of an underlying utility function (h𝑖
∗).  

h𝑖
∗ = Ziγ + ui (4) 

where z are vectors of observed variables for the SFMPs frequency choice equation. γ represents 

unknown parameter vectors to be estimated and ui represents unobserved effect. 

 

Since the utility level of an individual farmer (h∗) is unobserved, it is assumed to be related to the 

latent variable ℎ𝑖 which indicates the farmer’s observed choice of a combination of practices M 

(M=1, …, 5) as: 

ℎ𝑖 = {
1 𝑖𝑓 h𝑖1

∗ > (h𝑖𝑘
∗ ) 𝑜𝑟 ui1 < 0𝑘≠1

𝑚𝑎𝑥

. . .
𝑀 𝑖𝑓 h𝑖𝑀

∗ > (h𝑖𝑀
∗ ) 𝑜𝑟 uiM < 0𝑘≠𝑀

𝑚𝑎𝑥
(5) 

Assuming that u𝑖𝑗 are identically and independently Gumbel distributed, the selection model leads 

to a multinomial logit model where the probability of adoption extent 𝑗 (Pr𝑖𝑗) is (McFadden, 1973): 

Pr𝑖𝑗 = Pr(𝑖𝑗 < 0|z𝑖) =
exp(z1𝑖γ𝑖𝑗)

∑ (z1𝑖γ𝑖𝑗)𝐽
𝑗=1

(6) 

The parameters of the latent variable model can be estimated by maximum likelihood. 

 

4.3 Endogenous switching regression model 

An endogenous switching regression model is used to investigate the relationship between the 

outcome variable (technical efficiency) and SFMPs adoption in which farmers were partitioned into 

different regimes. The outcome equation for each possible combination of practices (Regime j) is 
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given as: 

{

𝑅𝑒𝑔𝑖𝑚𝑒 1: 𝑄𝑖1 = z2𝑖α𝑖1 + u𝑖1  𝑖𝑓 𝐼 = 1
…

𝑅𝑒𝑔𝑖𝑚𝑒 𝐽: 𝑄𝑖𝐽 = z2𝑖α𝑖𝐽 + u𝑖𝐽     𝑖𝑓 𝐼 = 𝐽
(7) 

where 𝑄𝑖𝑗 is the outcome variable of the 𝑖th farmer in regime j, 
𝑖𝑗

 is the corresponding vector 

coefficient to the factors influencing the outcome, and the error terms (u𝑖𝑗) are distributed with 

E(u𝑖𝑗  z1𝑖 , z2𝑖 ) = 0 and var(u𝑖𝑗  z1𝑖 , z2𝑖 ) =σ𝑗
2 . If the η𝑖𝑗  and u𝑖𝑗  are not independent, OLS 

estimates in Eq. (9) will be biased. Consistent estimation of α𝑖𝑗  requires the inclusion of the 

selection correction terms of the alternative choices in Eq. (9). The DM model assumes the 

following linearity assumption: 

𝐸(u𝑖𝑗| η𝑖1, … , η𝑖𝐽) = 𝜎𝑗 ∑ 𝑟𝑗(ηim − E(ηim))
𝐽

𝑚≠𝐽
(8) 

with ∑ 𝑟𝑗 = 0𝐽
𝑗=1  (by construction, the correlation between u𝑖𝑗 and η𝑖𝑗 sums to zero). 

 

Using this assumption, the equation of the multinomial ESR in Eq. (7) is specified as: 

{

𝑅𝑒𝑔𝑖𝑚𝑒 1: 𝑄𝑖1 = z2𝑖𝑖1
+ 𝜎1𝜆̂1 + 𝑖1  𝑖𝑓 𝐼 = 1

…
𝑅𝑒𝑔𝑖𝑚𝑒 𝐽: 𝑄𝑖𝐽 = z2𝑖𝑖𝐽

+ 𝜎𝐽𝜆̂𝐽 + 𝑖𝐽     𝑖𝑓 𝐼 = 𝐽
(9) 

where 𝜎𝑗 is the covariance between u𝑖𝑗 and η𝑖𝑗, and 𝜆𝑗 is the inverse Mills ratio computed from 

the estimated probabilities in Eq. (6) as follows: 

𝜆𝑗 = ∑ 
𝑗

[
P̂r𝑖𝑚 ln(Pr̂𝑖𝑚)

1−Pr̂𝑖𝑚
+ ln(Pr̂𝑖𝑗)]𝐽

𝑚≠𝐽 (10) 

where 
𝑗

 is the correlation coefficient of u𝑖𝑗 and η𝑖𝑗 , and 𝑖𝑗 are error terms with an expected 

value of zero.  

 

The above framework can be used to examine the average treatment effects (ATT) by comparing 

the expected incomes of high-extent adopters with the counterfactual incomes of non-adopters. 

Following Carter and Milon (2005) and Di Falco et al. (2011), we compute conditional expectations 

for each outcome variable in the actual and counterfactual scenarios as follows: 

 

Actual outcomes observed in the sample: 

𝐸 {

𝐸(𝑄𝑖2|I = 2) = z2𝑖𝑖2
+ 𝜎1𝜆̂2

…
𝐸(𝑄𝑖𝐽|I = J) = z2𝑖𝑖𝐽

+ 𝜎𝐽𝜆̂𝐽

(11𝑎) 

Counterfactual outcomes: 

{
𝐸(𝐸𝐸𝑖1|I = 2) = z2𝑖𝑖1

+ 𝜎2𝜆̂2

…
𝐸(𝐸𝐸𝑖1|I = J) = z2𝑖𝑖1

+ 𝜎𝐽𝜆̂𝐽

(11𝑏) 

 

The use of these conditional expectations allows us to derive unbiased estimates of the average 

treatment effects on treated (ATT): 

𝐴𝑇𝑇 = 𝐸(𝐸𝐸𝑖𝑗|I = j) − 𝐸(𝐸𝐸𝑖1|I = j) = z2𝑖 (
𝑖𝑗

− 
𝑖1

) + 𝜆̂𝑗(𝜎𝑗 − 𝜎1)  𝑗 = 2, … , 𝐽 (12) 
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The first term on the right-hand side of Eq. (12) represents the expected change in farms' mean 

outcome if their characteristics had the same return as other regime farms. The second term is the 

selection term that captures all potential effects of difference in unobserved variables. 

 

5. Results  

5.1 Conditional and unconditional adoption 

The joint and marginal probability distribution of farms for the four SFMPs is presented in Table 2. 

Of the 773 farms considered in the analysis, about 77.1% benefited from one or more SFMPs 

although all four SFMPs were applied in only 11 farms. Irrigation was the most common SFMP 

adopted by 23.9% of the sample farms. It was used in combination with subsoiling on 15.1% of 

farms and in combination with subsoiling and soil testing on 6.7% of farms. Subsoiling alone was 

adopted on 11.8% of farms, in combination with soil testing on 3.2% of farms and jointly with 

irrigation and straw returning on 3% of farms. 2.9% of the farms received only the soil testing 

practice and 2.7% benefited from the adoption of both soil testing and irrigation. The number of 

straws returning adopters was the least 1.3%. Similarly, 1.7% of farms used straw returning and 

subsoiling jointly, and only 0.1% adopted the combination of straw returning and soil testing. There 

were 22.9% of farmers that produce conventional farms without any practices adoption.  

 

Although the statistics on the joint and marginal probabilities provide interesting results, the sample 

unconditional and conditional probabilities of adoption also provide an indication of the existence 

of possible interdependence across the four SFMPs. The results suggest that the adoption of one 

practice increases the likelihood of adopting others. For example, the unconditional probability of a 

farm adopting irrigation is 55.1% and increases to 61.4% (straw returning), 59.7% (subsoiling), and 

60% (soli testing) conditional on the adoption of one practice, respectively. The same pattern holds 

for the other practices. The conditional probabilities show that the combination of two practices 

further increases the likelihood of adopting a third practice. For instance, the probability of irrigation 

adoption increases from 55.1% to 65.6% when farmers adopt both subsoiling and soil testing. The 

same is true for other combinations of two practices. The conditional probability of farmers adopting 

irrigation on the other three practices is 57.9%, which is the highest, followed by 32.4% for soil 

testing adoption and 17.5% for straw returning adoption. Interestingly, the unconditional probability 

of adopting subsoiling is 100% when farmers adopt all three of the other practices, indicating a 

strong relationship between subsoiling and the other practices. 

 

5.2 Regression Results 

5.2.1. Adoption decisions: MVP model results 

The results of the MVP model are estimated through the maximum likelihood method on farm-level 

data shown in Table 3. The data was fitted well by the model, as indicated by the Wald test [χ2(88) 

= 862.93, P = 0.00], which rejects the hypothesis that all regression coefficients within each equation 

are jointly equal to zero. Additionally, the likelihood ratio test [χ22(6) = 35.06, P = 0.00], reject the 

null hypothesis that the error term covariances across equations are not correlated, reflecting the 

heterogeneity in the adoption of SFMPs. Thus, a separate analysis of each SFMP variable is 

supported rather than aggregating them into a single variable. The results in Table 4 indicate that 

there is a significant negative correlation coefficient of -0.14 between irrigation and straw returning, 
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suggesting a substitution effect between the two practices. Subsoiling practice is significantly 

correlated to straw returning (0.13) and soil testing (0.33), suggesting that adoptions of SFMPs are 

interrelated. 

 

The MVP model results reveal that the gender of the household has a significant impact on SFMPs 

adoption with a different sign. That is, male farmers are more likely to adopt irrigation and female 

farmers have a higher probability to adopt subsoiling and soil testing. The result underscores the 

important role women play in agriculture and technology adoption decisions in developing countries. 

One implication is that with education improved, female farmers play a more important role in 

technology adoption decisions. Households who have a membership of the cadre positively 

influence the adoption of straw returning and subsoiling, because they more trust in government and 

have a better understanding of the importance of SFMPs. 

 

Famers’ education level has a positive impact on the adoption of irrigation and soil testing. Farmers 

with a higher education level tend to have a better understanding of the benefits of SFMPs adoption 

in increasing crop yield and quality. Education can also improve farmers' ability to access more 

sources of information and make informed decisions. Farmers with higher education may be better 

able to communicate with agricultural experts and other farmers about irrigation and soil testing 

methods. They can express their needs and concerns more effectively and collaborate with others to 

find solutions to common problems. 

 

Off-farm income increases the chance of farmers adopting irrigation and soil testing, reflecting the 

capacity to purchase external inputs and to cope with greater risk. These investments may include 

purchasing irrigation equipment, hiring technical experts to carry out soil tests, and purchasing 

fertilizers and other soil conditioners. Off-farm income can also reduce the financial risks associated 

with investing in SFMPs. Farmers with off-farm income may be more willing to take risks in 

adopting new practices because they have a more stable source of income to fall back on in the event 

of crop failure or other setbacks.  

 

The MVP model results also underscore the important role of cooperative play in the adoption of 

subsoiling and soil testing. Cooperatives can provide farmers with access to resources, such as 

specialist equipment or technical knowledge. Farmers who join cooperatives may have the 

opportunity to learn from other members who have adopted subsoiling and soil testing practices, 

which can help build trust and confidence in these practices. Cooperatives can also create economies 

of scale, making the adoption of SFMPs more cost-effective for individual farmers. 

 

The hypothesis that social learning positively affects the probability of adoption of SFMPs is 

confirmed. The results also reveal that households that have training are more likely to adopt soil 

testing because this practice is relatively knowledge-intensive and requires considerable 

management. Farmers using the internet are more likely to adopt straw returning. This suggests that 

improving ICT infrastructure and encouraging farmers’ awareness of learning to use ICT adoption 

is important in facilitating SFMPs adoption. The internet provides farmers with access to a wide 

range of information including using the right equipment, the timing of the practice, and how to 
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manage the soil to maximize its benefits. The internet can also facilitate knowledge sharing between 

farmers and experts by accessing forums, social media groups, and other online platforms.  

 

Land size has a significant positive impact on the adoption of irrigation and straw returning. Larger 

farms typically have more resources available which make it more feasible for farmers to adopt 

practices that require significant investments in time, labor, and equipment. They also may be able 

to afford to purchase or rent specialized equipment and hire technical experts to advise them on the 

best practices for straw returning and irrigation due to benefit from economies of scale in production. 

In practice, a farmer producing large-size farms is more likely to engage in long-term planning and 

investment in sustainable practices with access to financial resources and land tenure security. 

 

5.2.2 Adoption extent: ordered model results 

Table 5 shows the results from ordered probit models. The Chi-squared statistic for the ordered 

probit model is statistically significant [χ2(20) =259.55, p=0.00] at less than 1% significance level, 

indicating that the joint test of all slope coefficients equal to zero is rejected. Results show that the 

number of SFMPs adopted increases with education. As in the adoption decision, the farmers’ 

education level has a significant and positive effect on the level of SFMP use. Each additional year 

of education increases the probability of adopting more than two SFMPs by 0.4%. The membership 

of the cadre has a significant and positive impact on the number of SFMPs adopted. Farmers who 

are cadre in the village are 7% more likely to adopt more than two SFMPs.  

 

Social capital and network variables have significant and positive effects on the number of SFMPs 

used, with varying marginal probabilities. If a household is a member of a cooperative, the 

probability of adopting more than two SFMPs increases by 6.7%. Consistent with the probability of 

SFMP adoption, a farmer’s participation in training and peer effect plays an important role in the 

number of SFMPs adopted. Households who have a membership of village leaders positively 

influence the adoption of SFMPs since village leaders may have a better understanding of the 

potential benefit of SFMPs and may have access to resources that can facilitate the adoption. 

 

In the study area, households having awareness and finding the SFMP adoption profitable, are 1.6% 

more likely to adopt two or more practices. Farmland size has a statistically significant, but small 

positive marginal probability effect (0.6%) for adopting more than two SFMPs. This result is 

consistent with the positive effect of farmland size on the likelihood of adoption of SFMPs.  

 

5.2.3 Average treatment effect: endogenous switching regression results 

Table 6 presents the average treatment effects in terms of the adoption of different numbers of 

SFMPs. The simple comparison of mean technical efficiencies1 among different combinations is 

misleading because it does not account for both observed and unobserved factors that may influence 

the outcome variable (technical efficiency). To estimate the true average adoption effects for 

households that did (not) adopt, the mean value of technical efficiency of (non-)adopted farms are 

compared with the mean value of technical efficiency if the farm households had not (or had) 

adopted SFMPs. We do this by applying Eq. (12) to estimate ATT. 

 
1 We adopt stochastic frontier analysis to estimate farms’ technical efficiencies. 
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Compared with the mean difference in technical efficiency between the SFMPs adopters and non-

adopters, the positive and significant statistics of ATT reveal that farms with SFMPs are more 

efficient than traditional farms in vegetable production and productivity is increasing with the 

intensive adoption of SFMPs. Specifically, one-practice adopters would reduce efficiency in 

vegetable production by 0.06 if they had not adopted. Efficiency would shrink by 4.3% when 

switching from two-practice adoption to traditional production. The three-practice and four-practice 

adopters would have a score of 0.07 and 0.09 lower respectively if without any practice adoption. 

Overall, the findings emphasize the importance of the adoption of SFMPs among farmers as a means 

of improving soil fertility and farm productivity. 

 

6. Conclusions and Implications 

The results of this study show that: First, Of the 773 farms considered in the analysis, about 77.1% 

benefited from one or more SFMPs although all four SFMPs were applied in only 11 farms. 

Advanced irrigation is the most common SFMP used by the sample households and its adoption has 

a substitution effect with straw returning. Subsoiling practice is significantly correlated to straw 

returning and soil testing, suggesting that adoptions of SFMPs are interrelated.  

 

Second, the probability and extent of adoption of SFMPs are influenced by several factors: 

householder educational level and cadre membership in the village are the important household 

characteristics variables that have high impacts on the adoption of SFMPs; The significant role of 

cooperative participation and training assistance in practice adoption suggests more accessible 

information enhance the adoption of SFMPs; farmers with higher social capital are more likely to 

adopt most practices; individual awareness and attitude to practice adoption play important roles in 

a household’s decision to adopt SFMPs.  

 

Third, one-practice adopters would reduce efficiency in vegetable production by 0.06 if they had 

not adopted. Efficiency would shrink by 4.3% when switching from two-practice adoption to 

traditional production. The three-practice and four-practice adopters would have a score of 0.07 and 

0.09 lower respectively if without any practice adoption. Overall, the findings emphasize the 

importance of the adoption of SFMPs among farmers as a means of improving soil fertility and farm 

productivity. 

 

Several policy recommendations have emerged from the results of the Soil Fertility Management 

Study. Firstly, educational programs should be developed to disseminate information about SFMPs 

that is tailored to the needs of different farms and conducted by qualified agricultural experts. In 

addition, training should be provided to farmers on SFMPs and their benefits, and the exchange of 

knowledge and experience between farmers and other stakeholders, such as agricultural extension 

officers and agricultural researchers, should be facilitated. In addition, the formation of cooperatives 

should be encouraged and promoted to increase smallholder farmers' access to resources and 

markets, and support mechanisms should be put in place to ensure that cooperatives have access to 

the resources and services needed to effectively manage soil fertility. To further these objectives, 

the government should provide financial subsidies and incentives to smallholder farmers to 
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encourage them to adopt tap water management schemes and to raise their awareness of sustainable 

agricultural production. 
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Figures 

 

Figure 1 Map of the Study Area.  

Source: Use ArcGIS Map to draw. 
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Tables 

Table 1 Variable Selection and Descriptive Statistics 

Variable Interpretation Mean 

(Standard deviation) 

  All  Irrigation Straw return Subsoil Soil testing 

  (N=773) (N=426) (N=83) (N=340) (N=140) 

Independent Variables:       

Gender  Gender of household head: 1=Male; 0=Female 0.972  0.986  0.988  0.956  0.921  

 (0.166) (0.118) (0.110) (0.206) (0.270) 

Education  How many years of education does the 

household head have? 

8.242  8.455  8.325  8.185  8.636  

 (2.563) (2.567) (2.317) (2.502) (2.258) 

Leader  Is a village leader or not? 1=Yes; 0=No 0.084  0.092  0.325  0.118  0.129  

 (0.278) (0.289) (0.471) (0.323) (0.336) 

Market  The distance from household to markets (mu) 1.974  2.157  2.406  1.830  1.952  

 (3.213) (3.938) (5.541) (2.215) (1.640) 

Off-farm Have Off-farm incomes or not? 1=Yes; 0=No 0.591  0.622  0.711  0.553  0.700  

 (0.492) (0.485) (0.456) (0.498) (0.460) 

Ratio  Dependency ratio of those typically not in the 

labor force and those typically in the labor force 

0.750  0.792  0.803  0.741  0.747  

 (0.673) (0.652) (0.625) (0.642) (0.677) 

Success  Satisfied with vegetable income or not? 1=Yes; 

0=No 

4.427  4.465  4.458  4.515  4.507  

 (0.723) (0.621) (0.611) (0.706) (0.744) 

Cooperative  Does the household participate in a 

cooperative? 1=Yes; 0=No 

0.098  0.113  0.108  0.138  0.214  

 (0.298) (0.317) (0.313) (0.346) (0.412) 
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Source: Farm household survey (2019). 

Training  Is there training in the village? 1.582  1.547  1.458  1.524  1.343  

 (0.494) (0.498) (0.501) (0.500) (0.476) 

Internet  Access to an internet connection or not? 1=Yes; 

0=No 

0.216  0.244  0.434  0.259  0.329  

 (0.412) (0.430) (0.499) (0.439) (0.471) 

Peer The extent that farmer is influenced by 

neighbors, friends, and relatives 

3.646  3.730  4.012  3.918  3.864  

 (1.063) (0.948) (1.110) (0.965) (0.883) 

Ease of use  The extent that farmer values the ease of using 

practices 

2.799  2.854  2.940  3.012  3.029  

 (0.984) (0.983) (0.902) (0.938) (1.010) 

Usefulness  The extent that farmer values the usefulness of 

practices 

3.493  3.469  3.843  3.656  3.664  

 (0.910) (0.860) (1.006) (0.916) (1.022) 

Outcome Variable:       

Output Vegetable sales revenue (yuan/mu) 40699.930  40732.720  42749.990  45187.760  42521.310  

 (27584.040) (22614.030) (39867.510) (32600.580) (32398.250) 

Input Variables:       

Fertilizer The costs of fertilizers (yuan/mu) 6109.665  6235.153  4141.800  5571.209  5360.651  

 (5315.396) (5081.484) (4085.442) (4644.926) (5090.002) 

Pesticide The costs of pesticides (yuan/mu) 1675.023  1617.642  991.762  1550.292  1801.769  

 (2319.397) (1708.271) (1066.811) (1969.934) (1756.669) 

Others The costs of irrigation, seeds, plastic, and 

machinery (yuan/mu) 

3570.636  4158.703  2430.842  3554.395  3898.005  

 (4340.581) (5399.642) (3085.913) (4564.214) (6068.345) 

Labor Household labor costs (yuan/mu) 907.766  1058.828  837.822  1087.505  980.123  

 (1832.800) (1988.556) (2857.631) (2143.146) (1728.770) 

Land The farm size of vegetables (mu) 3.966  4.786  7.397  4.427  4.976  

 (5.301) (6.419) (12.100) (6.519) (8.096) 
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Notes: Numbers in the parentheses are the standard deviations; 1 mu ≈ 0.0667 hectares; 1 yuan = 0.141 US$ as per the exchange rates during the survey; Farm inputs 

and output in vegetable production are estimated on a per unit land basis. 
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Table 2 Marginal probabilities, unconditional and conditional probabilities of SFMPs adoption 

Practice  

Marginal 

probabilities 
Unconditional and conditional probabilities 

 Irrigation Straw Subsoil 
Soil 

testing 

Irrigation 0.239 1 0.120 0.477 0.197 

Straw 0.013  0.614 1 0.663 0.241 

Subsoil 0.118 0.597 0.162 1 0.282 

Soil testing 0.028 0.6 0.143 0.686 1 

Irrigation, straw 0.022 1 1 0.667 0.216 

Irrigation, subsoil 0.151 1 0.167 1 0.31 

Irrigation, soil testing 0.027 1 0.131 0.75 1 

Straw, subsoil 0.017 0.612 1 1 0.345 

Straw, soil testing 0.001 0.55 1 0.95 1 

Subsoil, soil testing 0.032 0.656 0.198 1 1 

Irrigation, straw, subsoil 0.030 1 1 1 0.324 

Irrigation, straw, soil testing 0.000 1 1 1 1 

Irrigation, subsoil, soil testing 0.067 1 0.175 1 1 

Straw, subsoil, soil testing 0.010 0.579 1 1 1 

Irrigation, straw, subsoil, soil testing 0.014     

None adoption  0.229     

Source: Farm household survey. 
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Table 3 Correlations of SFMPs adoption 

Practice  Irrigation  Straw  Subsoil  Soil testing  

Irrigation  1 -0.141* 0.098 -0.022   

(0.077) (0.060) (0.076) 

Straw  -0.141* 1 0.130* -0.022  

(0.077) 

 

(0.072) (0.076) 

Subsoil 0.098 0.130* 1 0.329***  

(0.060) (0.072) 

 

(0.065) 

Soil testing  -0.022 -0.022 0.329*** 1  

(0.076) (0.076) (0.065) 

 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Source: Farm household survey. 
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Table 4 Parameter estimates of multivariate regression model for SFMPs adoption 

Variable  Straw Irrigation  Plow  Soil testing 

Gender -0.143 0.874*** -0.645** -1.096*** 

 (0.492) (0.317) (0.310) (0.301) 

Education  -0.018 0.054*** -0.009 0.047* 

 (0.029) (0.020) (0.019) (0.025) 

Leader 1.032*** -0.238 0.418** 0.144 

 (0.192) (0.178) (0.179) (0.194) 

Market -0.023 0.013 -0.020 -0.006 

 (0.021) (0.020) (0.016) (0.018) 

Off-farm 0.201 0.207* -0.255** 0.285** 

 (0.157) (0.106) (0.101) (0.123) 

Ratio -0.024 0.020 -0.084 -0.042 

 (0.112) (0.078) (0.076) (0.090) 

Success -0.009 0.096 0.127* 0.031 

 (0.109) (0.070) (0.068) (0.081) 

Cooperative 0.049 0.109 0.394** 0.760*** 

 (0.227) (0.172) (0.164) (0.172) 

Training  0.134 0.016 0.103 0.601*** 

 (0.154) (0.106) (0.101) (0.121) 

Internet  0.464*** 0.097 -0.067 0.213 

 (0.171) (0.137) (0.128) (0.144) 

Peer 0.120* 0.042 0.232*** 0.046 

 (0.071) (0.048) (0.047) (0.059) 

Ease of use -0.109 0.086 0.142*** 0.063 

 (0.084) (0.054) (0.052) (0.063) 

Usefulness 0.225** 0.001 0.064 0.025 

 (0.104) (0.062) (0.061) (0.073) 

Land 0.035*** 0.046*** 0.016 0.015 

 (0.012) (0.015) (0.011) (0.010) 

Gucheng  -4.493 -0.159 -0.368* 0.036 

 (182.650) (0.208) (0.216) (0.286) 

Hualong  0.912** 0.503*** -0.004 0.359 

 (0.377) (0.190) (0.193) (0.248) 

Luocheng  0.998*** 0.323 0.068 -0.062 

 (0.385) (0.201) (0.206) (0.281) 

Sunji  0.622 1.132*** 0.074 0.431* 

 (0.383) (0.195) (0.191) (0.247) 

Tianliu  0.160 -0.782*** -0.139 0.517* 

 (0.448) (0.222) (0.211) (0.268) 

Constant  -3.446*** -2.487*** -1.734*** -0.689 

 (0.913) (0.607) (0.578) (0.654) 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Source: Farm household survey.  



 

 

23 

 

Table 5 Parameter estimates of ordered probit regression model for SFMPs adoption 

Variable Joint  Number of adopted practices  

0 1 2 3 4 

Gender -0.297 0.076 0.017 -0.044 -0.042 -0.007 

 (0.288) (0.073) (0.017) (0.042) (0.040) (0.007) 

Education  0.029** -0.007* -0.002* 0.004** 0.004* 0.001* 

 (0.015) (0.004) (0.001) (0.002) (0.002) (0.000) 

Leader 0.496*** -0.126*** -0.029*** 0.073*** 0.070*** 0.012** 

 (0.162) (0.041) (0.010) (0.023) (0.023) (0.005) 

Market -0.012 0.003 0.001 -0.002 -0.002 -0.000 

 (0.009) (0.002) (0.001) (0.001) (0.001) (0.000) 

Land  0.038*** -0.010*** -0.002*** 0.006*** 0.005*** 0.001*** 

 (0.010) (0.003) (0.001) (0.002) (0.001) (0.000) 

Off-farm 0.092 -0.023 -0.005 0.013 0.013 0.002 

 (0.083) (0.021) (0.005) (0.012) (0.012) (0.002) 

Ratio -0.049 0.012 0.003 -0.007 -0.007 -0.001 

 (0.069) (0.018) (0.004) (0.010) (0.010) (0.002) 

Success 0.102 -0.026 -0.006 0.015 0.014 0.003 

 (0.066) (0.017) (0.004) (0.010) (0.009) (0.002) 

Cooperative 0.458*** -0.117*** -0.027*** 0.067*** 0.064*** 0.011*** 

 (0.127) (0.033) (0.008) (0.019) (0.019) (0.004) 

Training  0.247*** -0.063*** -0.014*** 0.036*** 0.035*** 0.006** 

 (0.083) (0.021) (0.005) (0.012) (0.012) (0.003) 

Internet  0.161 -0.041 -0.009 0.024 0.023 0.004 

 (0.105) (0.027) (0.006) (0.016) (0.015) (0.003) 

Peer 0.172*** -0.044*** -0.010*** 0.025*** 0.024*** 0.004*** 

 (0.040) (0.010) (0.003) (0.006) (0.006) (0.002) 

Ease of use 0.107*** -0.027*** -0.006** 0.016*** 0.015** 0.003** 

 (0.041) (0.010) (0.003) (0.006) (0.006) (0.001) 

Usefulness 0.106** -0.027** -0.006* 0.016** 0.015** 0.003* 

 (0.053) (0.013) (0.003) (0.008) (0.007) (0.001) 

Gucheng  -0.290* 0.074* 0.017 -0.043* -0.041* -0.007 

 (0.174) (0.044) (0.011) (0.026) (0.025) (0.005) 

Hualong  0.473*** -0.120*** -0.027*** 0.069*** 0.066*** 0.012** 

 (0.151) (0.038) (0.010) (0.022) (0.022) (0.005) 

Luocheng  0.342** -0.087** -0.020** 0.050** 0.048** 0.008* 

 (0.158) (0.040) (0.010) (0.023) (0.023) (0.004) 

Sunji  0.744*** -0.189*** -0.043*** 0.109*** 0.105*** 0.018*** 

 (0.149) (0.038) (0.011) (0.021) (0.023) (0.006) 

Tianliu  -0.264 0.067 0.015 -0.039 -0.037 -0.007 

 (0.166) (0.042) (0.010) (0.024) (0.023) (0.004) 

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Source: Farm household survey. 
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Table 6 Average treatment effects of technical efficiency for SFMPs adoption. 

Number of practices  Non-adopter Adopter  ATT 

1 0.536 0.598 0.062*** 

 (0.087) (0.052) (0.089) 

2 0.555 0.598 0.043*** 

 (0.085) (0.071) (0.069) 

3 0.545 0.615 0.070*** 

 (0.116) (0.069) (0.101) 

4 0.542 0.635 0.093 

 (0.272) (0.126) (0.343) 

Notes: Standard deviations in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Source: Farm household survey. 

 


