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Abstract 

Assessing the effects of climate change on agricultural production is crucial for designing pol-

icies related to climate change and climate change mitigation. A large body of literature identi-

fied detrimental effects on crop yields around the globe under various climate change scenarios, 

while farm-level adaptation has been shown to mitigate the adverse effect of climate change on 

agricultural production. In this paper, we use a structural approach to examine farms’ produc-

tion responses to both expected and realized weather. We investigate how farmers adjust crop 

supply and input demand by estimating a system of output supply and input demand functions 

that controls for non-random crop selection. Using panel data on 1406 German crop farms 

(2005–2019), we find that both expected and realized weather outcomes determine farmers out-

put supply and input demand, and that a drought shock has both immediate and lasting effects 

on farmers’ production decisions. 
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1 Introduction 

By its very nature, agricultural production inherently depends on weather patterns (Ray et al. 2015). 

Rising mean temperatures along with changing precipitation regimes substantially alter growing condi-

tions for crops (Lobell, Schlenker and Costa-Roberts 2011) and livestock (Gisbert-Queral et al. 2021). 

Globally, anthropogenic climate change has already caused significant losses in agricultural productivity 

(Ortiz-Bobea et al. 2021). The increasing frequency of extreme weather events, such as floods, droughts, 

or frost events, poses an additional threat to agricultural production (e.g., Trnka et al. 2014; Barlow et 

al. 2015; Pullens et al. 2019), and hence to food supply and quality (Dalhaus et al. 2020). The ability of 

farms to adjust to these environmental changes is crucial for the viability of the agricultural sector in the 

future.  

In this paper, we use a structural approach to examine farms’ production responses to both expected and 

realized weather, using farm-level accountancy data from 1406 German crop farms. The estimated pa-

rameters of the conditional input demand and output supply functions are used to simulate the immediate 

and lasting effects of the European drought shock in 2018. Being the second largest cereal producer in 

Europe (BMEL 2020), Germany constitutes a well suited case to study heterogeneous production ad-

justments to changing weather patterns because of its diverse weather and soil conditions as well as its 

relevance for European and global food production. 

Previous studies concerned with the climate impact on agriculture largely rely on large-scale modelling 

approaches (e.g. Agnolucci et al. 2020; Rosenzweig and Parry 1994; Webber et al. 2018) or on statistical 

models using either panel data (Deschênes and Greenstone 2007; Schlenker and Roberts 2009) or cross-

sectional data (Mendelsohn, Nordhaus and Shaw 1994). It has been argued that panel data models are 

limited in their capability to capture long-term adjustments and thus may overestimate the climate 

change impact (e.g., Carter et al. 2018; Mérel and Gammans 2021). The cross-sectional approach, also 

called the Ricardian approach, was designed to fully account for long-run adjustments to different cli-

mates. Recent applications include Bozzola et al. (2018), Ortiz-Bobea (2020), and Huang and Sim 

(2021). Exploiting the cross-sectional variation in economic farm returns and weather variates, it is 

however vulnerable to omitted variable bias (Carter et al. 2018; Ortiz‐Bobea 2020). Neither of the men-

tioned approaches reveal how farmers adjust their production to different climatic conditions. For ex-

ample, farmers may adjust the level of fertilizer use in the short run or replace heat-sensitive crops with 

warmth-loving crops (Reidsma et al. 2010). Structural models, on the other hand, retain parameter esti-

mates that describe the farmer’s decision-making process. Farmers' revealed decisions allow under-

standing the adaptation to climate change and response to weather events, supporting the development 

of improved projections and targeted policies to support adaptation to climate change. In the context of 

climate change, only few applications of structural models exist (e.g., Kaminski, Kan and Fleischer 

2013; Yang and Shumway 2016; Sesmero, Ricker-Gilbert and Cook 2018). 
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Against this background, this paper assesses farmers’ responses in output supply and input demand to 

weather trends, both in the short and in the longer run, using a structural approach. We formulate a profit 

model in which farmers decide on planned output and input levels conditional on weather expectations. 

During the cropping season, they respond to contemporaneous weather outcomes by adjusting variable 

inputs such as fertilizer. The profit function incorporates the weather variables as exogeneous shifters, 

which are interacted with price variables to capture heterogeneous crop-specific yield impacts of 

weather. Empirically, we estimate a system of crop-specific output supply and input demand functions, 

conditioned on both expected and realized weather outcomes. Finally, we use the estimated parameters 

to simulate the immediate and lasting effect of drought shock on farmers’ input and output choices. Our 

case study relies on panel data from 1406 German crop farms (2005–2019) which are matched with 

local weather data.  

We contribute to the understanding of climate impacts on agriculture by developing a structural model 

that takes into account farmers’ behavioral responses to experienced weather outcomes in the more dis-

tant and the more recent past. This setting allows examining the short- and longer-term effects of ex-

treme weather events, such as the European drought in 2018, on farmer’s production decisions. The 

study is the first one to investigate weather impacts based on a structural model in EU agriculture, where 

crop rotation considerations may play a larger role compared to other regions. Contrary to previous 

studies in the context of climate impacts on agriculture, we account for non-random crop selection mech-

anism, as the use of farm level data combined with a fine distinction of several crop categories involves 

corner solutions to the profit maximization problem.  

We find that both expected and realized weather outcomes determine farmers output supply and input 

demand, and that the effect of weather experienced in the more distant past differs from the effect of the 

more recent past. Results from a simulation approach show that a drought shock has both immediate 

and lasting effects on farmers’ production decisions. 

The paper proceeds as follows. In the next section, we introduce the conceptual model which describes 

the effects of both expected and realized weather on output supply and input demand. Section 3 presents 

the data and Section 4 elaborates on the empirical approach and the econometric framework, including 

non-random crop selection. Section 5 presents the results, before Section 6 discusses and concludes.  

 

2 Conceptual Framework 

We are interested in how past and current weather affects farmers output and input decisions. This is 

because weather can affect the relative profitability of individual crops. For example, beets and potatoes 

require high precipitation and cannot be grown in dry regions without irrigation (Döll and Siebert 2002; 

Siebert et al. 2013). Precipitation is also a limiting factor for winter wheat, while temperature is consid-
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ered a limiting factor in maize and sugar beet production in Germany (Lotze-Campen et al. 2009). Ca-

chorro and Gobin (2018) assess that rising temperatures under climate change will negatively affect 

summer crop yields, especially of sugar beet and potatoes. Crop models by Agnolocci et al. (2020) 

predict that a one percent increase in temperature relative to current average temperatures in Germany 

would benefit canola yields but reduce the yield of pulses. Considering extreme weather events, Webber 

et al. (2020) found that drought is an important driver of silage maize yields and, to a lesser extent, of 

barley and wheat in the east of Germany. In the same study, heat is found to be harmful to wheat yields, 

while canola and silage maize are less affected by unusually high temperatures. However, the effect of 

weather on farmers’ production choices does not only depend on individual yield effects but especially 

on the relative profitability of each crop under different weather conditions. If warmer temperatures 

benefit maize yields more than sugar beets, for example, it can be rational to allocate resources away 

from sugar beets towards maize. Moreover, agronomic aspects from crop rotations must be considered 

if the crop portfolio is to be changed. Thus, farmers’ production responses to changing weather patterns 

are difficult to assess a-priori and remain an empirical question.  

Weather and production decisions 

Our goal is to evaluate farmers responses in output supply and input demand to weather trends. To 

achieve this goal, we model farmers’ decision making at the beginning of the crop season in two stages, 

following Chambers and Just (1989), assuming risk-neutral decision makers. In the first stage, farmers 

maximizes the expected profit from each crop given a fixed allocation of land. The crop-specific profit 

function is expressed as  

 𝜋𝑐(𝑝𝑐 , 𝑟, 𝑙𝑐 , 𝑠, 𝑤) = max
𝑥𝑐,𝑦𝑐

(𝑝𝑐𝑞𝑐 − 𝑟𝑥𝑐: 𝑞𝑐 ∈ 𝑄𝑐(𝑥𝑐 , 𝑙𝑐 , 𝑠, 𝑤))   , (1) 

where 𝜋𝑐 is the expected maximum profit from producing crop 𝑐, given its expected price 𝑝𝑐, input 

prices 𝑟, area allocated towards the crop 𝑙𝑐, site-specific characteristics 𝑠, and expected weather out-

comes 𝑤. In the second stage, the land input is allocated optimally across the crops, yielding the multi-

crop profit function  

 𝜋(𝑝𝑐 , 𝑤, 𝑙, 𝑠, 𝑤) = max
𝑥,𝑦

(∑(𝑝𝑐𝑞𝑐) −

𝐶

𝑐=1

∑(𝑟𝑘𝑤𝑘)

𝐾

𝑘=1

: 𝑞𝑐 ∈ 𝑄(𝑥, 𝑙, 𝑠, 𝑤)) (2) 

The optimal land allocation made at the beginning of the crop season depends on expected weather, 

since weather affects the profitability of each crop as shown by 𝑄𝑐(⋅) in equation (1). By standard re-

sults, the well-behaved profit function is non-decreasing in output prices, non-increasing in input prices, 

and homogeneous and convex in prices (Chambers 1988). 
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During the crop season, land allocation is fixed but farmers can adjust variable inputs (e.g., fertilizer) in 

response to actual weather realizations1. Hence, if realized weather deviates from expected weather, 

observed input use can deviate from assumed input use in the beginning of the season. Moreover, 

planned output may change because if realized weather conditions are most favorable for a particular 

crop, it is economically rational to allocate more resources (e.g., fertilizer) to this crop, because it in-

creases its relative profitability compared to other crops. In addition, realized weather affects profits 

directly through its effects on yields. Therefore, similarly to Sesmero et al. (2018), we express the real-

ized profit as a function of both expected and realized weather, i.e.  

 𝜋 = 𝑓(𝑝𝑐 , 𝑤, 𝑙, 𝑠, 𝐸[𝑤], 𝑤) (3) 

Finally, farmer’s output supply and input demand functions can be derived by taking the first derivative 

of this profit function (Hotelling 1932). The functional form of the output supply and input demand 

functions depend on the assumed functional form of the profit function, which are described below in 

the empirical framework. In summary, the described decision-making process highlights that farm 

profit, and hence output supply and input demand, through two channels: The first channel is through 

land-use adjustments by farmers based on their weather expectations, which carry a behavioral compo-

nent (see below) and define the expected profitability of individual crops. The second channel is the 

direct influence of observed weather on yield, while allowing for short-term input adjustments during 

the crop season. Both channels have been investigated individually using reduced-form equations in the 

literature. Such models regress either land allocation decisions on weather expectations (e.g. Arora et 

al. 2020) or yield (or total production) on weather realizations (e.g. Lobell et al. 2008). Contrary to the 

reduced-form models, our structural approach retains parameter estimates that describe the farmer’s 

decision-making progress, both on output and input choice, and thus allows simulating the impact of not 

weather trends and policy changes such as input taxes or subsidies.   

Weather expectations 

Farmers’ expectations about the weather play an important role in their production decisions (Ding, 

Schoengold and Tadesse 2009; Alem et al. 2010; Ramsey, Bergtold and Heier Stamm 2020). We assume 

that expectations on weather outcomes are formulated on experienced weather in the past. That is, farm-

ers form adaptive expectations (Nerlove 1958) regarding weather. Based on qualitative interviews with 

US farmers from the Midwest, Wilke and Morton (2017) infer that both the recent past and the more 

distant past influence farmer’s expectations about future weather, but it remains unclear how they dif-

ferentially influence current decisions. Similarly, Burke and Emerick (2016) state that it is unclear if 

farmers respond to short term weather shocks or longer-term weather and climate changes. From these 

observations, Ramsey et al. (2020) conclude that simply taking the average of past weather is not an 

 
1 The same argument may hold for price expectations. However, prices are often revealed after harvest and farmers 

use forward pricing to fix prices early. If this is the case, there is less scope to respond to price changes than to 

weather changes in the course of the crop season.  
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appropriate approximation to farmers’ weather expectation. We follow their approach and express farm-

ers’ weather expectations as 

 𝐸[𝑤𝑖,𝑡] = 𝜔0 + 𝜔𝑠𝑊(𝑤𝑖,𝑡−1, … , 𝑤𝑖,𝑡−𝑟) + 𝜔𝑙𝑊(𝑤𝑖,𝑡−𝑟−1, … , 𝑤𝑖,𝑡−𝑅)   , (3) 

where 𝜔0 is a reference expectation and 𝜔𝑠 and 𝜔𝑙 denote the farmers’ weights put on the recent and 

more distant past, respectively. The recent and more distant past2 are separated by year 𝑟. The effect of 

a weather event in the previous growing season on farmers’ expectations for the current growing season 

thus depends on the magnitudes of 𝜔𝑠 and 𝜔𝑙. While 𝑟 (i.e., the cutting point between the more recent 

and more distance past) must be chosen a-priori, these weights will be determined by the data without 

any prior assumptions.  

 

3 Data 

Farm production data 

We employ farm accountancy data from German crop producers over the period 2005-2019, provided 

by the Federal Ministry of Food and Agriculture. This data set is Germany’s contribution to the EU 

Farm Accountancy Data Network (FADN). Germany is characterized by a declining South-North gra-

dient in temperatures and limited precipitation combined with light soils in the East, making it an inter-

esting case for studying weather effects on agricultural production. The sample is a rotating panel which 

is stratified according to region, type of specialization and economic size to ensure its representativeness 

for commercial agricultural holdings. For the empirical analysis, we group all crops into five categories: 

Cereals except corn (most importantly wheat, barley, and rye), corn for grain, protein crops (beans and 

peas), oilseed crops (mainly canola), and root crops (sugar beets, potatoes, and fodder beets). Crops 

within the individual crop categories have similar agronomic characteristics, such as water and nutrient 

demands, soil requirements, or planting and harvest times. Crop rotations between the groups are typi-

cally highly compatible (for example, root crops following cereals), while rotations within the same 

group are often more prone to common diseases (for example, wheat following barley or beans follow-

ing peas).  

In our sample of German crop farms, cereals are grown at 99 per cent of all farms (see Table 1), followed 

by root crops (67 per cent) and oilseed (61 per cent). Fodder (22 per cent) and protein crops (13 per cent) 

are grown by a smaller number of farms, underscoring the need to address crop selection. In terms of 

physical quantity, root crops are ahead of cereals and, with great distance, fodder crops, oilseed, and 

protein crops. Expected prices for each crop category are computed as lagged district (nuts2)-level 

weighted averages by dividing the sum of crop revenues in a specific region by the region’s total quantity 

 
2 Ramsey et al. (2020) emphasize that in the expected-weather-formation process, the term “longer term” is not 

equivalent to a climatological notation of “long term”.  
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produced. We chose regional average prices over farm-level prices for two reasons. First, the latter in-

clude quality premiums and discounts and therefore mask quality differences in the production quantity 

(see Reinhard et al. 2001 for a similar reasoning in milk production). Second, in our data set, farm-level 

prices are only reported for farms producing a specific crop, while the crop choice also depends on the 

price of alternative crops. Using regional prices, on the other hand, implicitly consider quality differ-

ences if farm-level revenue is divided by these prices, and are available for all farms even for crops they 

do not produce in the current year. As reported by the descriptive statistics in Table 1, oilseed achieves 

the highest price per decitonne in our sample, followed by protein crops, cereals, root crops, and fodder 

crops. The magnitudes of these prices are in line with those observed in the German market.  

As for inputs, we consider two variable inputs (fertilizer and other material inputs) and three quasi-fixed 

inputs (land, labor, and capital). Fertilizer quantities and prices are approximated by combining infor-

mation on expenses from the accountancy data with country-level application rates and unit prices for 

nitrogen, phosphate, potash, and calcium oxide. For other material inputs (seed, pesticides, material, 

energy, contract services, and water use), we calculate implicit quantities by dividing total expenses by 

a Tornquist price index calculated at the regional (nuts2-) level (e.g., Henry de Frahan et al. 2011): 

𝑟𝑛𝑡 = ∑ (
𝑟𝑖𝑡

𝑟𝑖𝑠
)

𝑔𝑖𝑛𝑡−𝑔𝑖𝑛𝑠
2

𝑖

𝑤𝑖𝑡ℎ 𝑔𝑖𝑛𝑡 =
∑ 𝑉𝑖𝑓𝑡𝑓∈𝑛

∑ ∑ 𝑉𝑖𝑓𝑡𝑖𝑓∈𝑛
 (4) 

where 𝑛 denotes the nuts2-region, 𝑡 denotes contemporaneous time, s is the basis year, 𝑟𝑖𝑡 is the country-

level price index of the 𝑖𝑡ℎ item in year 𝑡, and 𝑉 are value shares. For quasi-fixed inputs, only quantities 

are required in our empirical specification. Land is measured in hectares, labor in annual working units 

(AWU), and capital use is approximated by deflated depreciation.  

Weather data 

Weather data are officially provided by the German Weather Service (DWD) at the 1x1 km grid level 

for the period 1960−2019. To match the weather records with the farm-level data, we aggregated them 

to the municipality (LAU, formerly nuts4) level3. There are more than 11,000 municipalities in Ger-

many, and the average size of a municipality is about 33 square kilometers, allowing for a good approx-

imation of weather outcomes at the farm level. In line with recent literature (Huang and Sim, 2020; 

Ramsey et al. 2020), we consider the following weather variables in the baseline model: Growing degree 

days between 8 and 32 °C (GDD), high degree days above 32 °C (HighGDD), precipitation in mm 

(PREC), and the number of dry days with less than 1 mm precipitation (DD). Growing degree days are 

calculated by fitting a sine curve over daily minimum and maximum temperatures as suggested by 

Schlenker and Roberts (2009). All weather variables are measured during the growing season March – 

August. These four weather variables capture both average climatic conditions (growing degree days 

and precipitation) as well as extreme weather events (high degree days and the number of dry days). We 

 
3 We used the municipalities of the year 2007 to consider border changes border during the observation period. 
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also include non-linear effects of growing degree days and precipitation in the empirical specification. 

Table 1 shows that the average year in our sample is characterized by 1550 growing degree days from 

March to August, and the yearly average sum of precipitation during this period is 423 mm. There are, 

on average, 160 dry days per year and 1.25 high degree days with a very large variation as indicated by 

the maximum and minimum values. As discussed above, we also include averages of recent and more 

distant weather observations to capture farmers’ weather expectations, motivated by Ramsey et al. 

(2020). In particular, we add a lag structure that measures each variable based on years 𝑡 − 1 to 𝑡 − 3, 

indicated with 𝐺𝐷𝐷1𝑡𝑜3, for instance, and based on years 𝑡 − 4 to 𝑡 − 10, indicated with 𝐺𝐷𝐷4𝑡𝑜10.  

 

Table 1. Descriptive statistics for all farms in the sample, 2005-2019 

Statistic Mean St. Dev. Min Max 

Cereals quantity (dt) 9,153.68 16,196.80 0.00 359,546.70 

Oilseed quantity (dt) 1,324.04 2,813.87 0.00 58,417.00 

Root crops quantity (dt) 11,389.74 20,041.21 0.00 402,123.00 

Protein crops quantity (dt) 114.52 655.88 0.00 18,468.00 

Fertilizer quantity (kg pure  

    nutrients) 

75.73 142.73 -20.15 2,496.60 

Other material input (const. EUR) 1,118.57 1,569.25 4.06 17,876.70 

Cereals price (EUR/dt) 13.80 3.50 4.10 21.77 

Oilseed price (EUR/dt) 33.37 7.57 17.52 62.24 

Root crops price (EUR/dt) 6.83 3.03 1.49 43.04 

Protein crops price (EUR/dt) 16.25 7.42 0.00 53.88 

Fertilizer price (EUR/1000 kg) 431.92 71.33 327.66 537.13 

Other materials price (index) 94.50 11.33 67.22 114.19 

Cereals area > 0 (yes or no) 0.99 0.12 0.00 1.00 

Oilseed area > 0 (yes or no) 0.61 0.49 0.00 1.00 

Roots area > 0 (yes or no) 0.67 0.47 0.00 1.00 

Protein area > 0 (yes or no) 0.13 0.34 0.00 1.00 

Total area (ha) 217.85 325.46 0.00 5,223.25 

Labor (Annual working unit) 2.45 4.82 0.00 118.00 

Depreciation (EUR) 435.61 712.05 0.00 13,674.86 

Number of growing degree  

    days (8-32 °C), Mar-Oct 

1,551.45 165.50 1,045.06 2,204.47 

Precipitation (mm), Mar-Oct 423.65 97.32 222.24 882.90 

Number of high degree days  

    > 32 °C, Mar-Oct 

1.25 1.64 0.00 14.55 

Number of dry days (precipitation  

    <1mm), Mar-Oct 

160.25 14.15 106.00 192.00 

Note: Number of observations: 9259 
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4 Empirical Framework 

Output supply and input demand functions 

We approximate the farm profit in (3) with a normalized quadratic functional form. In line with the 

theoretical framework, the profit function includes expected and realized weather outcomes as profit 

shifters and the weather variables are interacted with output and input prices (see also Sesmero et al. 

2018). With 5 crops, 2 variable inputs, 3 quasi-fixed inputs, 6 weather variables (including the nonlinear 

forms), and 𝑟1 being the price of the normalizing input 𝑥1, the profit function takes the following form:  
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The tilde over a variable indicates that the variable has been normalized by the price of the first variable 

input, e.g., �̃� = 𝜋/𝑟1. The division of profits and all prices by the numeraire makes the function homo-

geneous in prices. Convexity can be imposed by Cholesky factorization (Lau 1978; Diewert and Wales 

1987). The output supply and input demand functions are obtained by taking the first derivatives of the 

function in (5) with respect to output prices and input prices (Hotelling 1932): 
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+ 𝛽𝑐𝑘
𝑝𝑟

�̃�2 + ∑ 𝛽𝑐𝑚
𝑝𝑧

𝑧𝑚

3

𝑚=1

+ ∑ 𝛽𝑐𝑗
𝑝𝑤

𝑤𝑗

6

𝑗=1

+ ∑ 𝛽𝑐𝑗
𝑝𝐸[𝑤]

𝐸[𝑤]𝑗

6

𝑗=1

+ 𝜖𝑐 (6) 

 −𝑥2 =
𝜕�̃�

𝜕�̃�2

= 𝛽2
𝑟 + ∑ 𝛽𝑐2

𝑝𝑟
𝑝𝑐

5

𝑐=1

+ 𝛽22
𝑟𝑟�̃�2 + ∑ 𝛽2𝑚

𝑟𝑧 𝑧𝑚

3

𝑚=1

+ ∑ 𝛽2𝑗
𝑟𝑤𝑤𝑗

6

𝑗=1

+ ∑ 𝛽2𝑗
𝑟𝐸[𝑤]

𝐸[𝑤]𝑗

6

𝑗=1

+ 𝜖𝑘 (7) 

Estimating the system of equations in (6) and (7) identifies the effect of expected and realized weather 

on the farmers’ choices of output supply and input demand4.  

 

 
4 Equations (6) and (7) could also jointly be estimated with the profit function in (5). However, this approach often 

results in multicollinearity problems (Arnade and Kelch 2007). Although (6) and (7) identify many but not all 

parameters from the original profit function, the identified parameters are sufficient to for our purposes, as they 

allow evaluating price elasticities of supply and demand as well as the marginal effects of weather variables on 

profit-maximizing output and input levels.  
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Non-random crop selection 

Farmers typically do not grow all considered crops. The decision to grow a certain crop in a specific 

year depends on the relative expected profitability of crops, which is in turn influenced by weather 

expectations as well as economic, agronomic, and political factors. Thus, from an econometric point of 

view, farmers self-select into different cropping schemes. Estimating the output supply functions for the 

entire sample without consideration of this self-selection results in biased parameter estimates, as we 

only observe a farms’ production levels for crops whose profitability is above a certain (latent) threshold. 

The system of equations (6) and (7) with censored dependent variables 𝑦𝑖𝑡 for observation 𝑖 at year 𝑡 

can be written as  

𝑦𝑐𝑖𝑡 = 𝑑𝑐𝑖𝑡 × 𝑦𝑐𝑖𝑡
∗ ,   𝑑𝑐𝑖𝑡 = 𝐼(𝑑𝑐𝑖𝑡

∗ > 0) (8) 

𝑦𝑐𝑖𝑡
∗ = 𝑿𝑐𝑖𝑡𝜷𝑐 + 𝛼𝑐𝑖 + 𝜖𝑐𝑖𝑡 (9) 

𝑑𝑐𝑖𝑡
∗ = 𝒁𝑐𝑖𝑡𝜹𝑐 + 𝜂𝑐𝑖 + 𝑢𝑐𝑖𝑡 (10) 

where 𝑦𝑐𝑖𝑡
∗  and 𝑑𝑐𝑖𝑡

∗  are latent variables for the outcome equation and selection equation, respectively, 

and 𝜖𝑐𝑖𝑡 and 𝑢𝑐𝑖𝑡 are the corresponding error terms. Vectors 𝑿𝑐𝑖𝑡 and 𝒁𝑐𝑖𝑡 hold the explanatory variables 

for the outcome and selection equations, and they can share common elements. The function 𝐼 is an 

indicator function such that 𝑑 equals one if 𝑑𝑐𝑖𝑡
∗ > 0. Finally, 𝛼𝑐𝑖 and 𝜂𝑐𝑖 are farm- and crop-specific 

fixed effects. To obtain consistent estimates of output supply and input demand functions, we follow the 

two-step approach developed by Shonkwiler and Yen (1999)5. In the first step, we estimate the proba-

bility that a farm grows a specific crop as a function of quasi-fixed inputs, lagged land shares, price 

expectations, and a time trend with probit regressions. Using the probability density function 

𝜙𝑐𝑖𝑡(𝒁𝑐𝑖𝑡𝜹𝑐) and the cumulative distribution function Φcit(𝒁𝑐𝑖𝑡𝜹𝑐) of the crop-specific selection equa-

tions, we then estimate the system of equations in the second step as (Shonkwiler and Yen 1999): 

 𝐸(𝑦𝑐𝑖𝑡
∗ |𝑿𝑐𝑖𝑡𝜷𝑐) = Φcit(𝒁𝑐𝑖𝑡𝜹𝑐) × [𝑦𝑐𝑖𝑡(𝑿𝑐𝑖𝑡𝜷𝑐)] + 𝜇𝑐𝜙𝑐𝑖𝑡(𝒁𝑐𝑖𝑡𝜹𝑐) + 𝜖𝑐𝑖𝑡 , (11) 

where now 𝜖𝑐𝑖𝑡 is an error term with 𝐸[𝜖𝑐𝑖𝑡] = 0.  

The system of equations are estimated in the form of (11) using iterated feasible generalized nonlinear 

squares, which converges to the maximum likelihood estimator (Zellner 1962). To account for possible 

correlations between individual heterogeneity 𝛼𝑖𝑐 and the error terms of the crop selection and outcome 

equations, we use fixed-effects estimation along the lines of Chamberlain (1984) and Mundlak (1978) 

by adding the farm-level averages of each independent variable to each regression equation. To consider 

the uncertainty in the parameters obtained from the first-stage probit regressions, standard errors are 

obtained using non-parametric bootstrapping with 1000 replications.  

 

 
5 Studies using this approach in the agricultural economics literature include, amongst others, Sckokai and Moro 

(2006), Laukkanen and Nauges (2014), and Roosen et al. (2022). 
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Since prices and expected weather are contained both in the selection equation and in the structural 

equations, unconditional elasticities must account for changes in both equations. For example, the semi-

elasticity of output 𝑐 with respect to expected outcome of weather 𝐸[𝑤𝑗] is given by  

 

휀𝑞𝑐,𝑤𝑗
=

𝜕𝑞𝑐𝑖𝑡

𝜕𝐸𝑤𝑗𝑖𝑡
×

1

𝑞𝑐𝑖𝑡
 

= (Φcit(𝒁𝑐𝑖𝑡𝜹𝑐) ×
𝑞𝑐𝑖𝑡(𝑿𝑐𝑖𝑡𝜷𝑐)

𝜕𝐸𝑤𝑗𝑖𝑡
+

𝜕Φcit(𝒁𝑐𝑖𝑡𝜹𝑐)

𝜕𝐸𝑊𝑗𝑖𝑡
× [𝑞𝑐𝑖𝑡(𝑿𝑐𝑖𝑡𝜷𝑐)]

+ 𝜇𝑐 ×
𝜕𝜙𝑐𝑖𝑡(𝒁𝑐𝑖𝑡𝜹𝑐)

𝜕𝐸𝑊𝑗𝑖𝑡
) ×

1

𝑞𝑐𝑖𝑡
 

(12) 

= (Φcit(𝒁𝑐𝑖𝑡𝜹𝑐) × 𝛽𝑐𝑗
𝑝𝑤

+ 𝜙𝑐𝑖𝑡(𝒁𝑐𝑖𝑡𝜹𝑐) × [𝑞𝑐𝑖𝑡(𝑿𝑐𝑖𝑡𝜷𝑐)] × 𝛿𝑐𝑗

− 𝜇𝑐 × (𝒁𝑐𝑖𝑡𝜹𝑐) × 𝛿𝑐𝑗 × 𝜙𝑐𝑖𝑡(𝒁𝑐𝑖𝑡𝜹𝑐)) ×
1

𝑞𝑐𝑖𝑡
 

Simulation of farm responses to an extreme weather event 

It is not always meaningful to interpret the (semi-)elasticities of various weather variables in isolation, 

as they are usually interdependent. For example, the ceteris paribus interpretation of the number of dry 

days requires to hold total precipitation fixed. Simulation exercises can therefore help to better under-

stand the effect of weather outcomes on production choices. In addition, transformative events such as 

droughts may have different impacts on farmers’ behavior than incremental events such as gradual 

changes in temperature (Wilke and Morton 2017). Hence, we assess the short- and longer-term effects 

of an extreme weather event by simulating farm-level responses to a one-year drought shock over a 

period of 10 years, based on the estimated parameters from the profit system. As an exemplary case, we 

use the 2018 German drought which led to severe losses across crops in Germany (Webber et al. 2020). 

For this purpose, we suppose that a drought shock takes place in period 𝑡 = 0. In 𝑡 = −1, we set all 

weather variables to their long-term average value (e.g., over the past 30 years). This period serves as 

benchmark for the following years. In 𝑡 = 0, the realized weather variables are set to the German aver-

age values in the drought year 2018, while the lagged variables are still equal to their long-term averages. 

The drought shock further influences the 1to3-years lagged variables in the first three years following 

the shock, and the 4to10-years lagged variables in years four to ten after the shock. The detailed formula 

to compute these variables, as well as their descriptive statistics, are presented in the appendix. The 

simulated levels of output supply and input demand are obtained by plugging these simulated weather 

variables into the regression equations, using the estimated parameters from the output supply and input 

demand functions.  
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5 Results 

First-stage regression results: Crop choice 

The results from the first-stage regressions reveal how expected weather, along with prices and quasi-

fixed inputs, affects crop choice. The full parameter estimates from the probit regressions are reported 

in Table A.1 in the Appendix. As the estimated coefficients of a probit regression have no direct inter-

pretation, we compute the average partial effects of expected weather outcomes on the probability of 

crop selection. Following Ramsey et al. (2020), we add the partial effects of the more recent and more 

distant pasts to compute the net effect of weather expectations. Figure 1 shows that cereal production 

does not respond to changes in any of our four weather variables, when evaluated at the sample mean. 

This result is expected, because nearly all farm observations in our sample engage in cereal production. 

More expected growing degree days slightly decrease the probability of corn and oilseed production, 

more expected high degree days slightly decrease corn for grain production, and higher expected pre-

cipitation increases the likelihood of protein production. All other relationships are not statistically sig-

nificant at the 5%-level, suggesting that other factors (possibly prices, agronomic aspects, or policy 

environments) may be more important drivers of crop portfolio changes within the considered crops.  

 

Figure 1. Weather effects on crop choice at the sample mean. Vertical bars indicate 95%-confidence 

intervals obtained from non-parametric bootstrapping.  

 

Second-stage regression results: Price and weather elasticities 

The model fit and full parameter estimates of the system of output supply and input demand functions 

are presented in Tables A.2 and A.3 in the appendix. Table 2 reports own- and cross price elasticities 

with respect to crop output levels and variable input levels, evaluated at the sample mean. As described 

above, price and weather elasticities contain the effects of prices and weather both in the selection equa-

tions and in the output supply and input demand equations. To account for uncertainty in both stages, 

the 95%-confidence intervals are again obtained from bootstrapping. Parameter estimates for which the 
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confidence interval does not include zero are written in bold. From economic theory, we expect that 

optimal output quantities increase in own prices and optimal input quantities decrease in own prices. 

This is the case for all estimated elasticities that are significantly different from zero. For example, 

evaluated at the sample mean, cereals supply increases by 0.33% if cereal prices increase by 1%, and 

fertilizer demand decreases by 0.77% if the fertilizer prices increase by 1%. Own-prices elasticities of 

protein, root, and corn output are insignificant, indicating that output levels of these crops are not highly 

influenced by their prices in the short term. Protein crops may be primarily grown for environmental 

reasons and sugar beet production is usually linked to delivery rights issued by sugar factories (see, e.g., 

Wimmer and Sauer 2020), which can explain the price inelastic supply of these crops. Contrary to own-

price elasticities, cross-price elasticities, can take either sign because there may be synergies between 

crops or crop-rotational requirements. If this is the case, the optimal supply of one crop increases with 

enhanced supply of the other crop. For example, an increasing oilseed price does not only enhance 

oilseed production but also cereals and protein production, mostly at the expense of corn production.  

 

Table 2. Own- and cross price elasticities of supply and demand 

 Q Cereals Q Protein Q Oilseed Q Roots Q Corn X Fertilizer X Others 
P Cereals  0.325  0.557  0.429 -0.036 -0.507  0.734  0.310 

 (0.232;0.421) (0.225;0.913) (0.248;0.608) (-0.106;0.065) (-0.933;-0.087) (0.568;0.903) (0.16;0.452) 

P Protein  0.016  0.062  0.098 -0.017  0.157 -0.004  0.025 

 (-0.035;0.065) (-0.083;0.212) (0.014;0.182) (-0.065;0.034) (-0.025;0.364) (-0.051;0.04) (0.013;0.038) 

P Oilseed  0.149  0.917  1.443  0.019 -0.461 -0.071  1.009 

 (0.081;0.214) (0.553;1.302) (1.185;1.682) (-0.037;0.084) (-0.894;-0.077) (-0.229;0.091) (0.837;1.175) 
P Roots  0.010 -0.051 -0.012  0.121 -0.077 -0.081  0.092 

 (-0.028;0.05) (-0.235;0.118) (-0.085;0.064) (-0.123;0.347) (-0.658;0.537) (-0.13;-0.028) (-0.14;0.379) 
P Corn -0.032  0.022 -0.172  0.024 -0.241 -0.008 -0.039 

 (-0.089;0.022) (-0.195;0.258) (-0.261;-0.087) (-0.272;0.339) (-0.735;0.285) (-0.12;0.098) (-0.072;-0.004) 

W Fertilizer -0.199 -0.083  0.651  0.011 -0.103 -0.769 -0.062 
 (-0.246;-0.155) (-0.459;0.301) (0.411;0.884) (-0.058;0.109) (-0.741;0.535) (-0.997;-0.539) (-0.167;0.043) 

W Others -0.269 -1.425 -2.438 -0.122  1.232  0.198 -1.335 

 (-0.393;-0.138) (-2.155;-0.756) (-2.832;-2.013) (-0.503;0.187) (0.128;2.302) (-0.14;0.534) (-1.729;-0.985) 

Note: Elasticities are evaluated at the sample means. For example, at the sample mean, a 1%-increase in cereals 

price increases cereals supply by 0.325%. 95%-Confidence intervals (95%-CI), presented in parentheses, are 

obtained using non-parametric bootstrapping. Parameter estimates for which the 95%-CI does not include zero 

are written in bold.  

 

 

Next, we evaluate how optimal output supply and input demand respond to changes in past and contem-

poraneous weather. Because weather realizations in the lagged structures (e.g., GDD1to3 and 

GDD4to10) essentially arise from the same signal, they can be best interpreted by looking at their com-

bined effect on the outcome variables (Ramsey, Bergtold and Stamm 2021). Table 3 displays elasticities 

of crop supply and input demand with respect to the four considered weather variables. It is important 

to recall that these elasticities do not represent pure weather-yield effects. Instead, they indicate how the 

profit-maximizing supply of individual crops change under different weather conditions. If a particular 

crop is not affected at all by a certain weather condition, but other crops planted at the same farm are 

negatively affected, it can be rational for the farmer to allocate more resources (e.g., labor, capital, fer-
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tilizer, or other material inputs) to the crop that is not affected, as this crop increases its relative profita-

bility. Thus, we would observe a positive effect on output supply of this particular crop, although there 

is no direct yield effect. According to our results, growing degree days during the current growing season 

decrease the supply of cereals and protein crops, precipitation increases the supply of protein crops, 

more growing degree days increase protein crops supply and decrease root crops supply, and dry days 

increase oilseed supply. The ceteris paribus effects of past weather differs from the effects of realized 

weather. For example, experiencing high growing degree days in the past increases farmers’ supply of 

cereals, oilseed, and root crops, and experiencing dry days in the past decreases the supply of protein 

and oilseed crops.   

 

Table 3. Semi-elasticities for weather and production decisions 

 Q_Cereals Q_Protein Q_Oilseed Q_Roots Q_Corn X_Fertilizer 

Observed weather 
  GDD -1.470   -0.807  -0.956  4.004   3.502 -2.196 

 (-2.257;-0.665) (-3.528;2.043) (-2.603;0.572) (-0.418;8.278) (-5.313;12.073) (-3.595;-0.752) 

  PREC  0.578    2.703   0.389  2.153  -1.846  1.105 

 (-0.023;1.175) (0.709;5.232) (-0.778;1.521) (-0.484;4.643) (-5.956;2.147) (0.036;2.13) 
  GDD High -0.001    0.028   0.000 -0.044  -0.020  0.020 

 (-0.005;0.004) (0.008;0.051) (-0.012;0.011) (-0.056;-0.034) (-0.048;0.007) (0.013;0.026) 

  Dry Days  0.722   -4.412   4.536  7.360  -6.423 15.961 

 (-1.335;2.851) (-12.734;4.078) (0.347;8.928) (-0.378;15.437) (-23.196;9.405) (12.639;19.272) 

Past weather 

  GDD  4.014   -2.729  20.376 23.075 -11.929 52.762 

 (0.986;7.108) (-18.345;12.109) (11.088;29.719) (12.263;34.449) (-42.99;18.952) (43.829;61.753) 

  PREC  6.626    8.362   0.944  1.938   9.391 -6.557 

 (2.609;10.769) (-6.891;23.628) (-7.417;8.885) (-18.449;22.089) (-18.754;39.183) (-17.43;4.488) 

  GDD High  0.037   -0.127   0.415 -0.195  -0.170  0.320 

 (-0.007;0.083) (-0.376;0.099) (0.303;0.529) (-0.342;-0.035) (-0.517;0.171) (0.244;0.401) 

  Dry Days 14.091 -215.174 -32.424 60.589 -65.250 23.499 
 (-0.577;28.134) (-284.903;-154.933) (-66.164;-2.208) (-1.729;124.193) (-168.515;37.299) (-0.976;48.28) 

Note: Semi-elasticities are evaluated at the sample means. For example, at the sample mean, a increase in 

GDD by 1000 days increases cereals supply by 1.470%. Confidence intervals, presented in parentheses, 

are obtained using non-parametric bootstrapping. 

 

 

Simulation results 

As outlined above, the individual weather effects must be interpreted with care because the ceteris pa-

ribus interpretation is not always sensible. For example, it may be rarely the case that the number of dry 

days changes without a change in total precipitation. To obtain a better understanding of how different 

weather outcomes both in the past and in the current year change crop supply and production decisions, 

we simulate the production outcomes of a weather shock in the following section. The weather variables 

are set to hypothetical values as explained in section 4. All other observed variables (e.g., prices and 

quasi-fixed inputs) are set to their sample means. Figure 3 shows the change in output supply and ferti-

lizer demand after the drought shock in 𝑡 = 0, with 𝑡 = −1 (i.e., the long-term average) as the base year. 

The drought shock increases protein supply compared to its long-term average, while output levels of 

all other crops were below average in the drought year. Oilseed supply suffered the most from the shock 
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(-40 percent supply). Fertilizer use is also significantly reduced by the shock, consistent with lower 

growth potential of crops. Figure 3 further shows that the drought shock has long-lasting effects on 

output supply and input demand. Oilseed supply and fertilizer demand remain at reduced levels in the 

three subsequent years, before oilseed supply returns to its original level and fertilizer use is even in-

creased four years after the shock. Cereals production return to their original level immediately after the 

shock, while the supply of fodder, roots, and protein crops is enhanced in the three years after the shock.  

 

Figure 3. Simulated changes in crop supply and fertilizer demand after a drought occurring in 𝑡 = 0. 

 

6 Discussion and Conclusion 

In this paper, we assessed farmers’ response in crop supply and input use to weather trends. We hereby 

assume that farmers form weather expectations based on experienced weather outcomes distinguishing 

between the more recent and more distant past. The theoretical framework shows that expected weather 

affects production choices mainly through land allocation decisions, while realized weather affects out-

put directly through yield effects and indirectly through farmers’ input adjustments. Econometrically, 

we consider non-random crop selection using a two-stage approach, consisting of a first-stage probit 

regression to assess crop choice probabilities and a second-stage system of output supply and input 

demand equations.  Based on the estimated parameters, we estimate price and weather elasticities that 

consider their marginal effects in both the probit model and the structural equations.  

Price elasticities are primarily evaluated to assess the economic consistency of the model. In line with 

economic theory, statistically significant own-price elasticities of crops are positive and own-price elas-

ticities of fertilizer and other variable inputs are negative. The findings further demonstrate that elastic-

ities with respect to realized weather are different from elasticities with respect to expected weather. 

Since effects of individual weather variables are different to interpret in isolation, we assess the effect 

of a specific weather event using a simulation procedure. We find that a drought event reduces the supply 
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of all crop categories except for protein crops in the year of the event, and has lasting effects on farmers’ 

production choices in the years following the event. For example, oilseed supply is reduced by 40% in 

the drought year and returns to its original level after three years. Fertilizer use is also reduced in the 

drought year, consistent with reduced growth potential of plants, and is even increased in subsequent 

years, potentially to compensate for the supply losses caused by the drought.  

An important limitation of our approach is that it does not allow to explicitly disentangle land and yield 

elasticities. For this purpose, land allocation choices must be incorporated in addition to crop choices  

(e.g., Fezzi and Bateman 2011; Kaminski et al. 2013) or shadow price equations must be derived for 

each crop area allocation (e.g., Arnade and Kelch 2007). Incorporating contemporaneous and expected 

weather effects in such models is subject to further research. Furthermore, there may be interdependen-

cies between the choice of one crop and the output level of another crop, an issue that is addressed by 

Lacroix and Thomas (2011) and Chakir and Thomas (2022).  

Despite these limitations, the empirical results presented in this paper have implications for policy. Most 

importantly, they highlight that both contemporaneous weather and experienced weather affects output 

supply and input demand. Moreover, weather experiences in the more recent past have a different effect 

on output decisions than weather experiences in the more distant past, implying that there is a behavioral 

component in farmers’ formulation of weather expectations. Thus, both gradual changes in temperature 

and extreme weather events affect crop farmers’ portfolio choice, and policies designed to reduce green-

house gas emissions and to support farmers in climate change adaptation must consider these farm-level 

responses. The paper highlights that farm-level responses to weather trends are key in the assessment of 

the consequences of climate change in terms of output supply and input demand.  
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Appendix 

Table A. 1. Results from the first-stage probit regressions 

Variable Cereals Protein Oilseed Roots Corn 

Intercept  0.000 -1.691  -0.519 -0.071  0.662 

 (0;0) (-2.282;-1.071) (-1.765;0.604) (-0.211;0.041) (-0.149;1.42) 

P Cereals  0.000 -0.636   0.609 -0.066  0.410 

 (0;0) (-0.98;-0.314) (-0.057;1.292) (-0.145;0.063) (0.027;0.78) 

P Protein  0.000  0.028   0.127 -0.015 -0.117 

 (0;0) (-0.058;0.123) (-0.012;0.282) (-0.043;0.02) (-0.221;-0.022) 

P Oilseed  0.000 -0.417   0.477  0.002  0.087 

 (0;0) (-0.581;-0.261) (0.136;0.781) (-0.027;0.033) (-0.066;0.253) 

P Roots  0.000  0.109  -0.329  0.061  0.243 

 (0;0) (-0.197;0.434) (-0.976;0.295) (-0.099;0.156) (-0.092;0.582) 

P Corn  0.000  0.006   0.023 -0.002  0.120 

 (0;0) (-0.108;0.121) (-0.26;0.303) (-0.026;0.027) (-0.018;0.256) 

W fert  0.000  0.004   0.095 -0.001  0.003 

 (0;0) (-0.012;0.019) (0.06;0.129) (-0.004;0.003) (-0.016;0.023) 

K Land  0.000  0.184   0.466  0.016  0.096 

 (0;0) (0.092;0.28) (0.009;0.961) (-0.073;0.059) (-0.051;0.261) 

K Labor  0.000 -0.001  -0.006  0.002 -0.006 

 (0;0) (-0.006;0.005) (-0.015;0.003) (-0.002;0.004) (-0.011;0) 

K Capital  0.000 -0.006   0.013 -0.001 -0.021 

 (0;0) (-0.02;0.008) (-0.057;0.077) (-0.01;0.02) (-0.05;0.012) 

Trend  0.000  0.004   0.015  0.000  0.001 

 (0;0) (0;0.009) (0.004;0.026) (-0.001;0.001) (-0.005;0.008) 

L.Share Cereals  0.000 -0.045   0.207  0.003 -0.532 

 (0;0) (-0.177;0.076) (0.004;0.395) (-0.021;0.034) (-0.75;-0.319) 

L.Share Protein  0.000  0.574   0.229 -0.001 -0.499 

 (0;0) (-0.039;1.128) (-0.117;0.58) (-0.031;0.033) (-0.76;-0.247) 

L.Share Oilseed  0.000 -0.095   0.673  0.002 -0.571 

 (0;0) (-0.243;0.03) (0.392;0.968) (-0.024;0.038) (-0.794;-0.354) 

L.Share Roots  0.000 -0.028  -0.451  0.317 -0.521 

 (0;0) (-0.186;0.12) (-0.685;-0.217) (-0.092;0.586) (-0.739;-0.312) 

Gdd1to3  0.000  0.516  -1.010  0.152  2.654 

 (0;0) (-1.142;2.294) (-4.958;2.683) (-0.384;0.478) (0.568;4.774) 

Gdd1to3^2  0.000 -0.470  -0.738 -0.127 -1.895 

 (0;0) (-1.747;0.721) (-3.308;2.053) (-0.37;0.277) (-3.363;-0.449) 

Prec1to3  0.000 -1.589   0.676  0.115 -0.011 

 (0;0.001) (-2.513;-0.655) (-1.662;2.895) (-0.239;0.372) (-1.414;1.316) 

Prec1to3^2 -0.001  4.418  -1.345 -0.268  0.992 

 (-0.002;0) (2.323;6.444) (-5.993;3.492) (-0.848;0.56) (-1.754;3.952) 

GddHigh1to3  0.000  0.000   0.010 -0.001 -0.008 

 (0;0) (-0.007;0.007) (-0.002;0.021) (-0.002;0.002) (-0.015;-0.001) 

DD1to3  0.000  7.840  -0.121  0.208  2.323 

 (0;0) (5.627;10.071) (-5.33;4.924) (-0.424;0.695) (-0.301;4.969) 

Gdd4to10  0.000 -3.472  -0.141 -0.481 -0.204 

 (0;0) (-6.161;-0.763) (-5.242;5.201) (-1.164;0.579) (-3.877;3.204) 

Gdd4to10^2  0.000  2.174  -1.051  0.360  0.358 

 (0;0) (0.048;4.26) (-5.096;2.86) (-0.464;0.898) (-2.136;3.065) 

Prec4to10  0.000  0.664  -0.731 -0.020 -0.403 

 (-0.001;0) (-2.129;3.566) (-7.742;5.818) (-0.593;0.533) (-3.54;2.549) 

Prec4to10^2  0.001  1.122  -4.904 -0.047  0.857 

 (0.001;0.003) (-5.831;7.741) (-20.099;11.318) (-1.319;1.395) (-5.944;8.077) 

GddHigh4to10  0.000 -0.006   0.005 -0.001  0.009 

 (0;0) (-0.024;0.012) (-0.031;0.044) (-0.006;0.005) (-0.012;0.029) 

dd4to10  0.000 18.924 -29.881 -0.275  0.286 

 (0;0.001) (13.806;23.846) (-41.287;-18.656) (-1.231;0.989) (-5.968;6.453) 

Note: Each column presents an individual regression. The dependent variables are binary variables that take the 

value 1 if the crop (e.g., cereals) is grown and 0 otherwise. Confidence intervals are obtained using non-parametric 

bootstrapping.  



22 

 

 

Table A. 2. Regression diagnostics of the profit system 

Dependent variable Estimated 

parameters 

RMSE R-squared 

Cereal output 37 4.732 0.935 

Protein output 37 0.322 0.765 

Oilseed output 37 1.099 0.875 

Roots output 37 12.788 0.692 

Fodder output 35 9.384 0.352 

Fertilizer input 30 0.071 0.756 

Note: Estimation is based on 9,259 observations. The six equations are 

simultaneously estimated using iterated feasible generalized nonlinear 

squares.  

 

Table A. 3. Parameter estimates for the profit system 

Variable Coeff. 95%-CI Variable Coeff. 95%-CI 

Cereal crops supply  P Corn 0.343 (-2.447;3.395) 

Intercept 51.064 (42.946;60.822) W Fertilizer 0.002 (-0.018;0.023) 

P Cereals 20.106 (14.432;26.033) K Land 3.3 (0.518;5.938) 

P Protein 0.825 (-1.828;3.422) K Labor -0.039 (-0.191;0.084) 

P Oilseed 3.806 (2.072;5.478) K Capital -0.35 (-0.888;0.133) 

P Roots 1.257 (-3.385;6.005) Trend 0.133 (0.075;0.199) 

P Corn -2.147 (-5.944;1.424) GDD 0.539 (-8.45;10.263) 

W Fertilizer -0.386 (-0.477;-0.301) GDD^2 -2.822 (-9.573;3.291) 

K Land 35.512 (23.525;47.842) Prec 10.255 (4.037;17.782) 

K Labor 0.098 (-0.135;0.32) Prec^2 -25.355 (-40.443;-12.823) 

K Capital 0.504 (-0.575;1.414) GddHigh 0.049 (0.013;0.09) 

Trend -0.044 (-0.121;0.036) DryDays -7.768 (-22.559;7.628) 

GDD -17.289 (-30.392;-3.956) GDD1to3 -11.641 (-35.992;10.542) 

GDD^2 5.987 (-3.114;14.873) GDD1to3^2 2.854 (-13.045;20.227) 

Prec 11.308 (2.567;19.967) Prec1to3 18.157 (4.276;33.004) 

Prec^2 -28.334 (-45.085;-11.243) Prec1to3^2 -50.268 (-79.106;-24.473) 

GddHigh -0.005 (-0.044;0.033) GddHigh1to3 0.021 (-0.083;0.126) 

DryDays 6.448 (-11.84;25.419) DryDays1to3 -29.419 (-64.607;2.649) 

GDD1to3 63.597 (36.834;91.172) GDD4to10 -15.267 (-47.259;19.637) 

GDD1to3^2 -45.526 (-64.967;-26.577) GDD4to10^2 4.507 (-22.941;29.45) 

Prec1to3 71.063 (51.167;92.49) Prec4to10 26.859 (0.207;52.972) 

Prec1to3^2 -113.408 (-157.053;-73.994) Prec4to10^2 -82.137 (-135.34;-29.738) 

GddHigh1to3 0.08 (-0.036;0.192) GddHigh4to10 -0.304 (-0.617;-0.009) 

DryDays1to3 112.022 (69.216;153.923) DryDays4to10 -98.534 (-177.921;-25.723) 

GDD4to10 25.954 (-10.984;64.118) φ Protein -0.482 (-0.567;-0.414) 

GDD4to10^2 -34.515 (-64.448;-5.986) Oilseed supply   

Prec4to10 21.829 (-29.008;74.577) Intercept 0.224 (-3.593;3.995) 

Prec4to10^2 -44.331 (-157.117;63.102) P Cereals 3.806 (2.072;5.478) 

GddHigh4to10 0.254 (-0.068;0.591) P Protein 0.717 (-0.134;1.525) 

DryDays4to10 13.877 (-95.298;119.243) P Oilseed 6.222 (5.116;7.351) 

φ Cereals -0.084 (-1.38;1.406) P Roots 0.533 (-0.617;1.81) 

Protein crops supply  P Corn -2.357 (-3.456;-1.307) 

Intercept -7.049 (-14.5;1.057) W Fertilizer 0.015 (-0.019;0.05) 

P Cereals 0.825 (-1.828;3.422) K Land 9.323 (5.168;14.055) 

P Protein 0.911 (-0.438;2.337) K Labor 0.095 (0.003;0.189) 

P Oilseed 0.717 (-0.134;1.525) K Capital 0.106 (-0.109;0.312) 

P Roots -0.191 (-3.234;2.703) Trend -0.093 (-0.125;-0.06) 

 (continued on next page) 
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Tabelle A. 2 (continued from previous page) 
Variable Coeff. 95%-CI Variable Coeff. 95%-CI 

GDD -2.116 (-7.554;2.958) P Corn -3.195 (-15.198;9.826) 

GDD^2 0.578 (-2.868;4.225) W Fertilizer 0.004 (-0.055;0.068) 

Prec 2.674 (-0.655;5.94) K Land 2.54 (-18.069;24.089) 

Prec^2 -9.121 (-15.459;-2.757) K Labor -0.014 (-0.193;0.156) 

GddHigh 0 (-0.021;0.019) K Capital 1.22 (-1.117;3.862) 

DryDays 8.135 (0.649;16.022) Trend 0.15 (-0.007;0.309) 

GDD1to3 38.565 (25.957;51.457) GDD 23.123 (-29.573;73.536) 

GDD1to3^2 -29.478 (-38.929;-20.323) GDD^2 -16.584 (-48.233;16.474) 

Prec1to3 27.272 (20.304;34.62) Prec -6.49 (-28.316;15.205) 

Prec1to3^2 -42.859 (-57.772;-28.564) Prec^2 1.714 (-39.451;42.981) 

GddHigh1to3 0.15 (0.101;0.198) GddHigh -0.068 (-0.159;0.025) 

DryDays1to3 21 (1.769;40.064) DryDays -21.283 (-77.266;32.498) 

GDD4to10 52.301 (34.421;70.542) GDD1to3 2.262 (-82.478;86.179) 

GDD4to10^2 -43.006 (-57.225;-29.159) GDD1to3^2 0.948 (-56.064;58.711) 

Prec4to10 -24.387 (-42.665;-6.077) Prec1to3 -1.695 (-58.62;52.001) 

Prec4to10^2 55.547 (15.74;94.308) Prec1to3^2 -13.749 (-102.346;81.473) 

GddHigh4to10 0.556 (0.417;0.7) GddHigh1to3 -0.067 (-0.328;0.191) 

DryDays4to10 -4.276 (-47.274;33.787) DryDays1to3 -31.156 (-138.866;71.156) 

φ Oilseed -0.803 (-0.878;-0.739) GDD4to10 -31.702 (-142.606;75.308) 

Roots crops supply  GDD4to10^2 32.789 (-48.2;117.107) 

Intercept -6.524 (-57.026;34.751) Prec4to10 58.477 (-59.495;178.659) 

P Cereals 1.257 (-3.385;6.005) Prec4to10^2 -112.353 (-362.716;138.766) 

P Protein -0.191 (-3.234;2.703) GddHigh4to10 -0.468 (-1.264;0.301) 

P Oilseed 0.533 (-0.617;1.81) DryDays4to10 -124.763 (-363.812;121.442) 

P Roots 14.943 (-21.403;51.677) φ Corn -1.479 (-1.795;-1.199) 

P Corn 2.164 (-23.267;29.04) Fertilizer demand 

W Fertilizer 0.083 (0.029;0.134) Intercept -0.471 (-0.604;-0.347) 

K Land 13.018 (-4.438;38.207) P Cereals -0.386 (-0.477;-0.301) 

K Labor -0.301 (-1.027;0.446) P Protein 0.002 (-0.018;0.023) 

K Capital 4.052 (-1.947;8.977) P Oilseed 0.015 (-0.019;0.05) 

Trend 0.536 (0.203;0.851) P Roots 0.083 (0.029;0.134) 

GDD 89.006 (-2.365;176.43) P Corn 0.004 (-0.055;0.068) 

GDD^2 -61.859 (-117.493;-3.234) W Fertilizer 0.013 (0.009;0.016) 

Prec 35.126 (-20.725;86.579) K Land -0.33 (-0.456;-0.219) 

Prec^2 -47.835 (-162.36;78.917) K Labor -0.001 (-0.004;0.002) 

GddHigh -0.511 (-0.647;-0.384) K Capital -0.003 (-0.013;0.008) 

DryDays 84.64 (-4.468;177.477) Trend 0.011 (0.01;0.012) 

GDD1to3 153.882 (10.533;299.616) GDD 0.214 (0.013;0.411) 

GDD1to3^2 -94.865 (-195.313;3.444) GDD^2 -0.068 (-0.201;0.068) 

Prec1to3 -67.998 (-216.745;77.943) Prec -0.14 (-0.269;-0.006) 

Prec1to3^2 270.774 (-59.75;608.977) Prec^2 0.258 (-0.009;0.51) 

GddHigh1to3 -0.899 (-1.437;-0.419) GddHigh -0.001 (-0.002;-0.001) 

DryDays1to3 224.608 (-49.236;505.863) DryDays -1.213 (-1.471;-0.969) 

GDD4to10 353.092 (178.821;531.538) GDD1to3 -0.744 (-1.15;-0.327) 

GDD4to10^2 -250.983 (-381.281;-124.814) GDD1to3^2 0.627 (0.338;0.911) 

Prec4to10 -53.588 (-384.31;276.596) Prec1to3 -0.087 (-0.374;0.207) 

Prec4to10^2 404.657 (-286.482;1098.233) Prec1to3^2 -0.282 (-0.904;0.318) 

GddHigh4to10 -1.203 (-2.617;0.259) GddHigh1to3 -0.004 (-0.006;-0.003) 

DryDays4to10 476.341 (-128.404;1077.511) DryDays1to3 -0.629 (-1.333;0.068) 

φ Roots -20.008 (-20.877;-19.101) GDD4to10 -3.172 (-3.673;-2.738) 

Corn supply   GDD4to10^2 2.057 (1.728;2.439) 

Intercept -106.272 (-155.932;-62.95) Prec4to10 0.473 (-0.243;1.182) 

P Cereals -2.147 (-5.944;1.424) Prec4to10^2 -1.537 (-3.077;0.014) 

P Protein 0.343 (-2.447;3.395) GddHigh4to10 -0.02 (-0.025;-0.015) 

P Oilseed -2.357 (-3.456;-1.307) DryDays4to10 -1.158 (-2.653;0.304) 

P Roots 2.164 (-23.267;29.04)    

Note: Profit system is estimated as iterated seemingly unrelated regression (SUR) using the systemfit (Hen-

ningsen and Hamann, 2019) package in R. The Φ-parameters are obtained from first-stage probit regressions 

for each crop. Confidence intervals are obtained using non-parametric bootstrapping.  
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Simulation of weather shock 

To simulate farmers responses to a drought shock (using the 2018 drought shock as example) in year 

𝑡 = 0, we compute the following weather variables for years 𝑡 = −1 (i.e., one year before the shock) 

until 𝑡 = 10:  

 𝐺𝐷𝐷𝑡−1 = 𝐺𝐷𝐷𝐿𝑇𝐴  ;  

 𝐺𝐷𝐷𝑡 = 𝐺𝐷𝐷2018  ;  

 𝐺𝐷𝐷𝑡+𝑠 = 𝐺𝐷𝐷𝐿𝑇𝐴  , 𝑠 = 1,2, … ,10;   

 𝐺𝐷𝐷1𝑡𝑜3𝑡−1+𝑠 = 𝐺𝐷𝐷𝐿𝑇𝐴  , 𝑠 = 0,1; (10) 

 𝐺𝐷𝐷1𝑡𝑜3𝑡+𝑠 =
1

3
𝐺𝐷𝐷2018 +

2

3
𝐺𝐷𝐷𝐿𝑇𝐴   , 𝑠 = 1,2,3;  

 𝐺𝐷𝐷1𝑡𝑜3𝑡+𝑠 = 𝐺𝐷𝐷𝐿𝑇𝐴  , 𝑠 = 4,5, … ,10;  

 𝐺𝐷𝐷4𝑡𝑜10𝑡+𝑠 =
1

3
𝐺𝐷𝐷𝐿𝑇𝐴  , 𝑠 = 1,2,3;  

 𝐺𝐷𝐷1𝑡𝑜3𝑡+𝑠 =
1

7
𝐺𝐷𝐷2012 +

6

7
𝐺𝐷𝐷𝐿𝑇𝐴  , 𝑠 = 4,5, … ,10;  

 

The following table shows the resulting simulated weather variables: 

 Observed weather  Weather1to3  Weather4to10 

t GDD PREC GddHigh DD  GDD PREC GddHigh DD  GDD PREC GddHigh DD 

-1 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154 

0 1.780 0.356 1.499 0.162  1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154 

1 1.259 0.451 0.111 0.154  1.433 0.419 0.574 0.157  1.259 0.451 0.111 0.154 

2 1.259 0.451 0.111 0.154  1.433 0.419 0.574 0.157  1.259 0.451 0.111 0.154 

3 1.259 0.451 0.111 0.154  1.433 0.419 0.574 0.157  1.259 0.451 0.111 0.154 

4 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

5 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

6 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

7 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

8 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

9 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

10 1.259 0.451 0.111 0.154  1.259 0.451 0.111 0.154  1.333 0.438 0.310 0.155 

 


