

Mapping and Assessment of Agricultural Ecosystem Services in a Village Landscape: Evidence from Eastern India

Suvangi Rath^{1*}, Amarendra Das², Khitish Kumar Sarangi³ and Kiran Kumara T. M.⁴

¹Ph.D. Scholar, ³Asst. Professor, Dept. of Agricultural Economics, College of Agriculture, OUAT, Bhubaneswar, ²Reader-F, Economics, School of Humanities and Social Sciences, NISER, Bhubaneswar, ⁴Scientist, ICAR-NIAP, New Delhi

*E-mail: suvangi.rath@gmail.com

Introduction

- Context: Urbanization, Change in the land use pattern Agriculture & Wildlife
- Conflict between Conservation & Commercialization
- Political Ecology and Valuation of Agricultural Ecosystem Services
- Ecosystem Services Classification (MA, 2005),
- Developments in Ecosystem Services Assessment (Costanza et. al., 2017)
- Rice Ecosystem Services Assessment (Nayak et. al., 2019)

Research Aims Ecosystem Services at

- 1. Mapping
 - . Temporal Change
- 2. Temporal Change 3. Valuation
- Agro-Ecosystem
 Services

Village Landscape

Methodology:

- Data > Primary &
 Secondary
- Sampling > Purposive
- Mapping of Ecosystem
 Services CICIES, TEEB
 MA framework
- Tools Delphi technique, FGD, Conceptual Framework.
- Valuation of Rice &
 Fallow Land Ecosystems >
 Benefit Transfer Method
 & Willingness to Pay

STUDY AREA

Results & Discussion

Drivers of Ecosystem Changes Natural Environment Residents of Jamujhari Village Third Party (Government, NGOs and other villagers)

Ecosystem Services	on of Ecosystem Service Conversion factor in USD	Total Value per year (52.4 ha) in the village (\$)
Food	MSP (\$ 24.05)	47258.51
Straw	\$ 0.0155 per kg	4568.76
Market value of ES	-	51827.27
Bio-control of pest	1 Spider = US\$0.038, 1 Miridbug = US\$0.008,	Transcendent and construction of the second
	1 Ladybird beetle =	
	US\$0.06,	
	1 Ground	
	beetle = US\$ 0.0043	
Soil formation	Top-soil value is US\$	146.72
	2093 per ha	
Mineralisation of plant nutrients		4192
	US\$ 0.082 per kg	
Carbon flow	CER (Carbon Emission	- 26.2
	Reduction) is about	
	US\$ 21.71	
Nitrogen fixation	\$ 0.082 per kg	81.74
Soil fertility	Market price of	5292.4
	fertilizers	
Hydrological flow	US\$ 1.5 per 1000 m ³	576.4
Soil Erosion	Top soil value as US\$	- 209.6
	2093 per ha	
Non-market value of ES	- >	10137.30
Total Economic value of ES	- N	61964.57

Major Temporal Changes in the Ecosystem Services and their Use by the Local Residents (1990-2020)

- Forest and Wildlife
 Ecosystem: Decrease in
 available ecosystem
 services, displaced habitat
 of tribals
- Water Ecosystem: Decrease in natural fish in local water sources
- Grassland Ecosystem: Roughly no change
- Agricultural Ecosystem:

 Fall in the crop diversity,
 shift towards
 monocropping, inorganic
 farming & fallowing, fall in
 ecosystem services

Trade-off caused by the Drivers

- Decrease in ecosystem services but increase in rural economy owing to intensive, mechanised and inorganic farming
- Conflict between ecology & economy-Change of livelihood from agriculture to service sector
- Overall increase in global welfare as a result of development & conservation projects – Declaring the forest as an Elephant Sanctuary (Chandaka)

Conclusions

- Intensive mono-cropping & continuous fallowing: degrades ecosystem & its services
- Heavy pressure of urbanization on the ecosystem
- Reduced dependency on natural ecosystem
- Significant economic benefit from Rice (\$1182.53 ha⁻¹) & Fallow Land (\$123 ha⁻¹) ecosystems.

Further Research

- Identification of Indicators for non-marketable ecosystem services & Payments for Ecosystem services
- Quantification of the inter-linkages among the various ecosystems in the region
- Welfare implications of ecosystem services changes under local and global context.

References:

Costanza et al. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? *Ecosystem Services* 28: 1–16. MA, Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Synthesis. World Resources Institute, Washington, DC.

3. Nayak et al. 2019. Assessment of ecosystem services of rice farms in eastern India. Ecological Processes 8:35. https://doi.org/10.1186/s13717-019-0189-1

- Acknowledgments:
- I thank all the sources who have guided and helped in the research.