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Abstract 

The previous literature does not appropriately focus on the United States, one of the largest 

biodiesel producers, mingling price series in different countries. It employs spot and futures price 

series, although financial markets hold heterogeneous characteristics with non-commercial 

traders (i.e. speculators) who amplify price volatility by placing various types of positions (e.g. 

long and short positions with leveraged contracts and options). The present article is the first to 

apply the partial wavelet coherence and the Diebold-Yilmaz Connectedness Index in biodiesel 

price transmission research, concentrating on non-futures markets in the United States. Our 

research investigates the price inter-connectivity between biodiesel, highway diesel, crude oil and 

soybean, using the aforementioned state-of-the-art econometric techniques. The outcomes 

predominantly exhibit consistency between the two methodologies, implying the robustness of 

the results. Our main results are as follows: First, significant-high coherence for biodiesel-

soybean, biodiesel-highway diesel and highway diesel-crude oil is identified in the short and long 

term. Second, crude oil and biodiesel prices are net transmitters, while soybean and highway 

diesel prices are net receivers. Finally, the crude oil market is the source of spillovers among the 

four markets strongly influencing the highway diesel market.       

 
 Corresponding author.  

E-mail address: tetsuji.tanaka@econ.setsunan.ac.jp (T.Tetsuji).   
1 Both authors contributed equally to this work.   



 

Keywords: Biodiesel, soybean, price transmission, partial wavelet coherence, Diebold-

Yilmaz connectedness index 

 

Highlights:  

 The "fuel vs food" topic is a growing interest with the decarbonization movement 

 Two state-of-the-art econometric methods are applied to biodiesel price analysis 

 Unconventionally, local prices in the United States are used. 

 Energy and food markets are connected in the short and long term 

 

1. Introduction 

Biofuel has attracted international attention over the past two decades as a carbon-neutral fuel 

that is useful to reduce carbon dioxide emissions. From 2000 to 2019, biodiesel production grew 

as much as 50 times in the world (EIA, 2021). Several existing studies focus on biodiesel markets 

in European countries since the region accounted for an outstanding share of the global biodiesel 

production (Hassoueh et al., 2012; Abdelradi and Serra, 2015; Serra and Gil, 2012). Although the 

United States is the world’s second-largest biodiesel producer, its biodiesel markets have not been 

investigated in an appropriate manner. Kristoufek et al. (2012, 2014) use futures prices from the 

Chicago Board of Trade (CBOT) and the Intercontinental Exchange (ICE) together with the spot 

price of biodiesel in Germany. Hence, they do not, strictly speaking, concentrate on the biodiesel 

market relationships in the United States. In addition, futures markets encompass a sufficient 

number of non-commercial traders (i.e. speculators) who could proliferate market volatilities, 

placing long- and short-positions with leveraged contracts. The heterogeneity of market 

characteristics between financial and non-financial markets needs to be carefully considered when 



discussing the interaction between food and fuel prices that might generate different results. The 

existing studies analyzing the U.S. markets focus on futures and spot prices (Kristoufek et al. 

2012, 2014; Vacha et al., 2013).      

Another issue is that some advanced econometric techniques have been underutilized in 

the previous literature. The wavelet coherence has gained immense popularity, particularly in the 

area of financial commodity markets and macroeconomics. The model enables us to continuously 

identify the statistical significance of the time and frequency domains, the degree of effects, and 

the lead-lag relationship, which suits time-series price inter-connectivity analyses and is applied 

to biofuel and related commodity markets by Vacha et al. (2013) for the first time. The partial 

wavelet coherence that controls for the effects of third variables on the pairwise connectedness is 

first employed for the current subject by Kristoufek et al. (2016) that analyze the futures prices 

connections among bioethanol, crude oil, gasoline and corn markets. Accordingly, the partial 

wavelet model has never been applied to the price relationships between biodiesel and other 

relevant goods. Besides, the Diebold-Yilmaz Connectedness Index (DYCI)  originated in Diebold 

and Yilmaz (2012, 2014) is also a newly developed method to simultaneously interrogate the 

correlations between various variables, making it possible to discover the pass-through source of 

variables relationships. Though this approach is also becoming more common in financial market 

analyses, no paper applies it in the “food versus fuel” research. 

This article fills the aforementioned knowledge gap by employing the partial wavelet 

continuous transform and DYCI to explore the inter-relationships among biodiesel, highway 

diesel, soybean and crude oil non-futures prices in the United States, spanning from April 2007 

to December 2020. Our research is the first to apply the above two methods to price connectivity 

analysis between biodiesel and relevant goods. The results from the two techniques function as a 

robustness check, reinforcing the trustworthiness. 



The paper is structured as follows. Section 2 presents the existing literature on the topic. 

The methodology and data are explained in section 3, followed by section 4 that reports on the 

empirical results. Section 5 describes policy implications based on our outcomes. Finally, section 

6 summarises the paper with future research themes.       

  

2. Literature review 

Copious existing studies on price links between biofuels and food goods primarily focused 

on bioethanol price linkages with the price of relevant commodities, and research on price 

spillovers between biodiesel and agricultural goods is relatively scarce. This section overviews 

the past analyses of price relationships between biodiesel and foods. 

Several papers tackle the issue in European regions. Hassouneh et al. (2012) concentrate 

on Spanish energy and food markets using the co-integration and vector error correction (VEC) 

methods, which argues that the prices of biodiesel, sunflower oil, and crude oil maintain the long-

run connectivity although sunflower oil price does not affect biodiesel price in the short run. 

Abdelradi and Serra (2015) examined the price volatility transmissions between biodiesel, 

rapeseed oil and crude oil in European countries, using GARCH models. Significant asymmetries 

are discovered in volatility spillovers between pure biodiesel and rapeseed oil prices. Cabrera  and 

Schultz (2016) analyze price and volatility risk originating in linkages between Germany's energy 

and agricultural commodity prices using VEC models. They find that prices move together and 

preserve an equilibrium in the long term, while correlations are positive with persistent market 

shocks for most of the sample period. Concerns about biodiesel being the cause of high and 

volatile agricultural commodity prices are rather unjustified. Serra and Gil (2012) analyze the 

connectedness between diesel and crude oil prices in Spain, showing symmetric dependence by 

which both extreme increases and decreases in the crude oil price are equally likely to be passed 

on to consumers. Busse et al. (2012) examine the liaisons between diesel and biodiesel prices and 



between soy oil, rapeseed oil, and biodiesel prices in Germany. They find that the long-term 

relationships between biodiesel and diesel prices and between biodiesel, rapeseed oil, and soy oil 

prices exist. 

 Some past research papers shed light on biodiesel markets in other regions. Kristoufek 

et al. (2012) applied a minimal spanning tree and hierarchical tree to investigate the 

interconnections among various fuel and agricultural commodities of futures prices from the 

Chicago Board of Trade and the Intercontinental Exchange and German biodiesel spot price. They 

conclude that biodiesel price is associated with energy prices but not with its feedstock price. 

Vacha et al. (2013) use the wavelet coherence method on ethanol, biodiesel, gasoline, diesel, 

crude oil, corn, wheat, soybean, sugarcane and rapeseeds oil. It is found that biodiesel price is 

correlated with German diesel price during stable (non-crisis) period at a low frequency while 

biodiesel price co-moves with soybean and rapeseed oil prices in the long run. The mutual 

dependency between biofuels and related goods are analyzed by Kristoufek et al. (2012). This 

article uncovers that biodiesel and German diesel are mutually dependent, bioethanol and 

biodiesel hold mutual responsiveness with fossil fuels, and their connectedness is price-dependent. 

Further, they discover that biodiesel price is intensely influenced by German diesel and soybean 

prices. To sum, most articles find that biodiesel price correlates with feedstock prices in the long 

run though the relationship is not always established in the short run. In addition, biodiesel price 

tends to co-move with fuel prices. Kristoufek et al. (2014) use the two-stage least squares 

procedure to probe biodiesel market transmissions using German spot biodiesel and agricultural 

futures prices from the CBOT. They discovered that the strength of spillovers increased during 

the global food crisis period around 2008. 

Even though state-of-the-art econometric techniques such as the wavelet transform and 

DYCI have gained immense popularity in recent years in financial commodity markets and 

macroeconomics , they are not fully applied to the price correlation in biofuel research. Only two 



existing articles employ the wavelet coherence methodology applying to biofuel price 

interdependency on food prices. Vacha et al. (2013) are the first to apply the technique to discover 

the interaction between biofuels and related goods. The partial wavelet model that allows us to 

consider third variable effects on the pair is employed by Kristoufek et al. (2016), concentrating 

on bioethanol markets. The DYCI has never been utilized in either bioethanol or biodiesel markets.  

To conclude, to the best of our knowledge, there is no publication focusing on non-futures 

price inter-connectivity analysis between biodiesel and related goods in the United States. 

Additionally, no article discovers the long- and short-term impacts between those commodities 

using the DYCI method and the partial wavelet coherence framework.   

 

3. Methodology and Data 

In this section, we describe in detail the empirical methods applied to the present study. 

Methodologically, we focus on two mathematical tools: the multivariate wavelet technique 

introduced by Aguiar-Conraria and Soares (2014) and the time domain connectedness measures 

proposed by Diebold and Yilmaz (2012, 2014). The reader who is not interested in the technical 

details may skip to segment 4, where we interpret the empirical results of our analysis. 

 

3.1. Multivariate wavelet analyses 

To examine the dynamic interaction and lead-lag relationship among soybean, biodiesel, 

highway diesel and crude oil across time and frequency domain, we employ the multiple wavelet 

coherency, partial wavelet coherency, partial wavelet phase-difference, and partial wavelet gain.  

First, following Aguiar-Conraria and Soares (2014), the continuous wavelet transform 

(CWT) of a time series    2x t L   can be represented by  
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Note that wavelet  1  is the function of two variables  ,xW     where    is the 

scaling factor controlling the width of the wavelet, while   is a translation parameter describing 

the location of the wavelet ( ,    and 0  ). The window of function2  ,xW    becomes 

larger with corresponding lower frequency for 1  . Meanwhile, the window becomes narrower 

with higher frequency for 1  . If the wavelet function   is complex, the wavelet transform 
xW  

is also complex-valued. Based on the CWT, we can derive the wavelet power spectrum (WPS) 

as:   2

x x xx
WPS W W W  . The WPS gives us a measure of the variance distribution of univariate 

time series.  

Second, to be able to investigate the dynamic correlation between fuel and food price 

returns, we need to introduce a bivariate framework of wavelet analysis. For the bivariate case, 

the cross-wavelet transform of two time-series ( )y t   and ( )x t  , denoted by yxW  , is defined as 

yx y xW W W  and its absolute value 
yxW  is referred to as the cross-wavelet power (CWP). The 

CWP of two time-series reflects the covariance between two time-series along both time scales 

and frequency. Based on the CWP, we can derive the complex wavelet coherency yx , by  
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where   represents a smoothing operator in both scale and time. For simplicity, we introduce the 

 
1 The specific wavelet we use in this paper is the Morlet wavelet defined by   2
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 . See Aguiar-

Conraria and Soares (2014) for a discussion of some important properties of this wavelet. 

2 For simplicity, we will omit  ,   in the next formulae. 



notation yx   to replace  yxW   and use y   and x   to denote  2

yW   and  2

xW  , 

respectively. Hence, Eq. (2) can simply become yx
yx

y x




 
 . The absolute value of 

yx  is called 

the wavelet coherency, which can be defined by 
yx yxR  . The wavelet coherence is the ratio of 

cross-spectrum to the product of the spectrum of each individual series. 

Given a complex-valued wavelet, Aguiar-Conraria and Soares (2014) also provide a 

phase difference tool to clarify the information about the possible delays of the oscillations 

between two time series. The wavelet-coherence phase difference is determined as follows:
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where the smoothed real ( ) and imaginary ( ) parts should have been estimated in Eq. (2). 

We identify the lead-lag relationship between  y t   and  x t   at each time and frequency by 

using the value of the phase difference. Specifically, a phase difference of zero indicates that the 

two series co-move: when  0, / 2yx  , the two series move in-phase (positively related) with 

 y t  leading  x t . Yet, when  / 2,0yx   , we say that  x t  leads  y t . On the other hand, 

the two series are in an anti-phase relationship (negatively related) when  , / 2yx      and 

 / 2,yx   , while  y t  leads  x t  in the former and  x t  leads  y t  in the latter. Finally, we 

apply the technique of wavelet partial coherency which helps identify the resulting wavelet 

coherency between two time series  y t   and  x t   after eliminating the influence of the 

controlling variable  z t  . Following Aguiar-Conraria and Soares (2014), the complex partial 

wavelet coherency between y  and x , after controlling for z , is given by  
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where yz  and xz  are defined in a similar manner to yx , while and yzR  and 
xzR  are calculated in 

a similar manner to 
yxR . The absolute value and the angle of ,yx z , will, respectively, be called 

the partial wavelet coherency and the partial wavelet phase-difference between the series y  and 

x , after controlling for z , and be denoted by 
,yx zR  and ,yx z 3. Further, Mandler and Scharnagl 

(2014) generalize the concept of wavelet gain and define the partial wavelet gain, which can be 

interpreted as a regression coefficient in the regression of y   on x   after controlling for other 

variables. Following Mandler and Scharnagl (2014), the partial wavelet gain ,yx zG  is indicated 

by  
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(5) 

The partial wavelet gain provides the magnitude of impact among variables at each time 

and frequency. 

 

3.2. DYCI measures 

We also use a time domain connectedness measure to examine the directional return 

connectedness and build a network among the prices of food, biofuels, and fossil fuels. Following 

Diebold and Yilmaz (2012, 2014), we consider 4 variables  VAR k  system, defined as follows: 

 
3 To save space, we do not express the definition of 

.yx zR  and 
.yx z  but these are available from the 

authors on request. 
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where a 4 1  vector of the variables at time t  is denoted by tz , including soybean, biodiesel, 

highway diesel and crude oil. i  expresses the autoregressive coefficients of dimension 4 4  and 

tu  stands for serially uncorrelated innovations of the VAR system. If the VAR model above is a 

covariance stationary, the Eq. (6) can be rewritten as an infinite moving average process: 

1
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  , where the coefficient matrix i  obey the recursion: 

1 1 2 2i i i p i p            , and for 0i  , 0i  . To make the order irrelevant to the 

results of the variance decomposition, we add the H-step-ahead forecast errors for 1,2,...,H   

suggested by Koop et al. (1996) and Pesaran and Shin (1998). As such, the generalized variance 

decomposition becomes:  

   
 

21

0
1

0

1
H '

i h jg h
ij H ' '

jj i h h jh

H
 


  











 

 
 

,
 

(7) 

where the connectedness matrix  g
ij H  is the contribution of the jth variable to the forecast error 

variance of the element ith at horizon h.   marks the covariance matrix of errors in the VAR 

model. jj  is the standard deviation of the innovation for the jth equation, whereas the 4 1  

selection vector is represented by i  with the ith element equal to 1, and 0 otherwise. 

The advantage of the DYCI approach is that it provides the direction of pairwise 

connectedness, which enables understanding of the spillovers between variables. We use ( )g
ij H  

to represent the directional connectedness from variable j  to variable i  which is defined as:  
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For simplification, it is denoted as ( )i jC H . Note that the own and cross-variable 

variance contribution sums to 1 under the generalized decomposition with 
1

( ) 1
N g
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  . Since one of our purposes is to estimate the total connectedness (T.C.), we sum 

up the pairwise connectedness and construct the T.C. as: 
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(9) 

This shows the impact of connectedness across variables on the total forecast error 

variance. More, it is important to investigate the spillover effect and identify which variables are 

transmitting a shock to others and which are receiving a shock from others. The directional 

connectedness (D.C.) to the variable i from all other variables j is given by: 
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With the reverse, the directional connectedness from variable i to all other variables j 

is calculated as: 
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(11) 

Based on Eq. (10) and Eq. (11), we then obtain the net total connectedness (N.C.) from 

variables i to all other variables j as follows: 



( ) ( ) ( )i i iNC H C H C H  
 

(12) 

The NC indicates whether variables are net transmitters or receivers of shocks when the value is 

positive and when it is negative.  

Finally, for a closer look into specific variables, it is also of interest to identify the net 

pairwise directional connectedness (NPDC) between two variables i and j, which can be set as: 

( ) ( ) ( )ij j i i jNPDC H C H C H   .
 

(13) 

This makes us to better understand the transmission mechanism between two specific 

variables. 

 

4. Empirical Results 

The primary objective of this current paper is to examine the price pass-through 

mechanism between biodiesel, highway diesel, crude oil and soybean. While the attention paid in 

our research is to the linkage between biodiesel and soybean, we also include highway diesel and 

crude oil as a substitutive good and production factor of diesel, respectively. We collected 

monthly price data series for crude oil, biodiesel, highway diesel, and soybean in the United States 

to analyze their relationships with the sample period spanning April 2007 to December 2020. The 

crude oil and soybean prices data are from the Energy Information Administration and the Federal 

Reserve Economic Data, respectively. We obtained biodiesel and highway diesel price data from 

the USDA Economic Research Service.  



All series are seasonally adjusted by using the X-13-ARIMA method4.
tR  represents the 

monthly price returns calculated as the logarithmic first difference of prices: 

   1ln lnt t tR p p   . The price at time t  is shown with tp . Table 1 reports the summary 

statistics and preliminary tests of price returns for biodiesel, soybean, highway diesel and crude 

oil. According to it, the positive value of mean for biodiesel and soybean are observed, while the 

mean values for highway diesel and crude oil are negative. On average, soybean data provided 

the highest returns. The lowest yield is displayed by the crude oil data. We also see that the 

standard deviation value of crude oil is larger than others, indicating more volatility. Furthermore, 

all the variables are negatively skewed indicating a high probability of negative returns. In term 

of kurtosis, crude oil and highway diesel are leptokurtic, which suggests that distributions of these 

two variables have fat tails. Also, all returns are not normally distributed at a 1% significance 

level based on the Jarque-Bera (J-B) normality test. Further, the results of the augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

(Kwiatkowski et al., 1992) unit root test demonstrate that all price returns are stationary. Finally, 

the results from the autoregressive conditional heteroscedasticity (ARCH)-Lagrange multiplier 

(L.M.) test (Engle, 1982) suggest that the ARCH effects in return series apply for all the prices. 

On the other hand, the Breusch-Godfrey (B-G) L.M. test (Breusch, 1978; Godfrey, 1978) indicate 

evidence of serial correlation in soybean and crude oil. These results show some potential non-

linearities in the series and provide the reasonability and necessity of applying wavelet-based 

analysis.  

 

Table 1. Descriptive statistics and preliminary tests 

 
4 X-13-ARIMA (autoregressive integrated moving average) as developed by the US Census Bureau is one of the most popular methods 

for seasonal adjustment. 



 Biodiesel Soybean Highway diesel Crude oil 

3Mean 10  0.91 3.287 -0.733 -1.925 

Std.Dev. 0.050 0.069 0.047 0.120 

Skewness  -0.513 -0.637 -0.713 -0.888 

Kurtosis  3.839 5.428 6.880 17.555 

J-B test 11.996*** 51.403*** 116.767*** 1469.089*** 

ADF test -9.130*** -6.989*** -7.654*** -9.059*** 

KPSS test 0.056 0.095 0.042 0.041 

ARCH test 5.485*** 8.370** 5.225** 42.295*** 

B-G LM test 1.010 7.483** 0.142 5.070*** 

Observations 164 164 164 164 

Note: ** and *** denote rejection of the null hypothesis at the 5% and 1% significance levels. The lag 

length selection is based on Schwarz Bayesian information criteria (SBIC) in the ADF and KPSS tests. 

We use 2 lags in both the ARCH test and B-G LM test 

 

The monthly price returns of each variable are depicted in Fig. 1(a) on the left side, 

together with their wavelet power spectrum in Fig. 1(b) on the right side. The wavelet power 

spectrum indicates the magnitude of the variance for each return series and provides a first 

assessment of the behavior of each variable in the time and frequency domain. Here, all the returns 

are separated into two time-scale sections: short-term variation (high frequency) of 1 to 4 months, 

long-term variation (low frequency) of 4 to 8 months. From 5,000 times Monte Carlo simulations 

applying phase-randomized surrogates we expose the critical values. For the cones of influence 

(COI) we used a black outline which points out the area affected by edge effects.  

Since Grinsted et al. (2004) argued that the results outside the COI region may not be 

reliable, we discuss the wavelet power specters inside the COI in this study. First, looking at 

soybean price in Fig 1(b.1), it is noted that the zones of volatility are largely dense in the time 



frame 2008-2012, especially at 1-2 months frequencies. Second, in the case of biodiesel in Fig. 

1(b.2), we observe that the price returns exhibit high volatility at both high and low frequencies 

and appear from late 2008 to 2015. Third, in terms of highway diesel price in Fig 1(b.3), we 

identify two large regions of high volatility at either 1-4 or 4-8 months and they appear throughout 

the whole sample periods. Finally, the crude oil return in Fig 1(b.4) shows the high volatility of 

crude oil return can be identified in short-term frequencies band, occurring 2008-2010 and 2018-

2019. The wavelet power spectrums are consistent with the corresponding time plots in 

Fig.1(a.1)–Fig.1(a.4). It is important to point out that the relatively volatile periods for these four 

price returns roughly coincide with the 2007-2008 global food crisis and the 2008-2009 financial 

crisis.   

After identifying the volatility of all the price returns across time and frequency domains, 

we further explore their co-movement and lead-lag relationship based on multivariate wavelet 

analysis in the next section. 



 

Fig. 1. Price-return plot and wavelet power spectrum for soybean, biodiesel, highway diesel and 

crude oil price returns. 

Note: (a.1)-(a.4) convey the trend of the each return. (b.1)-(b.4) are the wavelet power spectrum of each 

return. The black and gray contour represent the 5% and 10% significance level, respectively. The strength 

of wavelet power and the local volatility is shown by colors ranging from blue (lowest) to red (highest). 

The broken white line indicates the maximum of the local wavelet power spectrum for each variable.  

 

 

5. Empirical results 

5.1 Wavelet analysis 

In this subsection, the time-varying interaction and lead-lag relationship amongst 

biodiesel, soybean, highway diesel and crude oil returns are analyzed by partial wavelet coherence 



combined with the partial phase difference and partial wavelet gains5. The results of the partial 

coherency between each pair of variables over time and for different frequency domains are 

described from Fig. 2 (a.1) to Fig. 2 (f.1). The statistically significant coherence regions are 

represented by the red area with the black contour.  

First, it is worth mentioning that the persistence of strong coherence regions at 4-8-

month frequency band can be identified in the pairs of biodiesel-soybean, biodiesel-highway 

diesel and highway diesel-crude oil. This indicates a strong correlation exists among these three 

pairs of variables in the long-term scales. Specifically, the regions with significantly high 

coherence can be observed running from 2014 to 2016 for biodiesel-soybean in Fig. 2 (a.1). 

Moreover, according to the partial phase-difference in Fig. 2 (a.2), we can find that the phase 

differences are between 0 and 2 , indicating biodiesel positively lead soybean. In addition, the 

partial wavelet gains in Fig. 2 (a.3) show that the corresponding coefficient is close to 0.04 for 

the significant coherences. On the other hand, the partial coherence between biodiesel and 

highway diesel (Fig.2 (b.1)) is particularly strong between the beginning of 2012 to the middle of 

2014. In this significant range, the phase difference in Fig. 2 (b.2) is between 0 and 2 , implying 

a positive relationship between two variables, with biodiesel leading. Meanwhile, the partial 

wavelet gains in Fig. 2 (b.3) decreased from 0.1 to 0.09 in this period. Finally, the region of high 

partial coherency between highway diesel and crude in Fig.2 (f.1) is observable across most of 

the sample. For the statistically significant region, the corresponding partial phase differences in 

Fig. 2 (f.2) are between 0 and 2 , suggesting that crude oil positively lead highway diesel in 

the long term. Moreover, the partial wavelet gain (Fig.2 (f.3)) indicates that the coefficient of the 

period of coherence is from 0.09 to 0.1. 

 
5  The definition of the frequency band, significance level, COI and used color code are similar to the 
wavelet power spectrum analysis. 
 



Turning our attention to the results for the high frequency (short-term), some different 

patterns emerge. More specifically, according to Fig. 2 (a.1), the partial coherency between 

biodiesel and soybean become stronger after 2014, especially in 2015 and 2019. What’s more, we 

find that many pairs of variables, such as biodiesel-highway diesel in Fig. 2 (b.1), biodiesel-crude 

oil in Fig. 2 (c.1) and soybean-highway diesel in Fig. 2 (d.1), have shared a similar high coherency 

region running from 2009 to 2014. Also, the results of soybean-crude oil in Fig. 2 (e.1) exhibit 

that high coherence extends from 2017 to 2019. By contrast, the significantly high coherence 

between highway diesel and crude oil in Fig. 2 (f.1) can be identified throughout the sample 

period in the short term. It is interesting to note that the partial phase-difference exhibit time-

variation and that the partial wavelet gains fluctuated dramatically across the sample period for 

all the variables pairs in the short term. 

 

 



 

 

Fig 2. Empirical results of partial wavelet analysis 

Note: On the left: partial wavelet coherence. In the center: partial phase-difference. On the right: partial 

wavelet gain. The color code for coherence ranges from blue (low coherence) to red (high coherence). The 

black contour designates the 5% significance level. 

 

The wavelet analysis above provides noticeable evidence that the significant-high coherence for 

biodiesel-soybean, biodiesel-highway diesel and highway diesel-crude oil can be identified both 

in short term and in long term.  

 

5.2 Dynamic connectedness analysis 



The above wavelet analysis provides us with an overview of coherence and causality 

across the food and fuel market but does not examine in detailed the degree of connectedness and 

the spillover effect among the returns of biodiesel, soybean, highway diesel and crude oil. Based 

on the DYCI approach , we further conduct the dynamic spillover analysis. As the final model 

specification, a two lags VAR model is applied to estimate the connectedness index in our 

analysis6.  

First, Table 2 shows the static connectedness index across all variables. The off-diagonal 

elements capture shocks from (to) others and diagonal elements denote shocks of their own. We 

can see the total connectedness index (TCI) in the system is 41.18% suggesting that the 

interdependence between food and fuel markets is significant. More importantly, the results of 

directional spillovers from all variables to one specific variable vary from 27.90% for soybean to 

55.9% for highway diesel. This indicates that highway diesel is the most affected by shocks from 

others while soybean is the least affected by the shock from others. On the other hand, regarding 

the contribution to others, crude oil has the highest total contribution (51.70%) to others and 

soybean has the lowest total contribution (23.10%) to others. The results of the net spillover 

provide evidence that soybean and highway diesel are the net recipient, meanwhile, biodiesel and 

crude oil are the net transmitters, respectively. Based on the connectedness index table, we can 

also obtain a net pairwise spillover matrix for all pairs.  

 

Table 2. The total static connectedness index among biodiesel, soybean, highway diesel and crude 

oil. 

 
6 Our results indicate that the two-lag VAR model with a 10-step-ahead forecast horizon and the 24-month rolling sample provides 

the best performance based on SBIC. Full results are available upon request from the authors.  



 Biodiesel Soybean Highway diesel Crude oil From others 

Biodiesel 61.60 12.50 13.20 12.72 38.40 

Soybean 15.91 72.15 7.00 4.94 27.90 

Highway diesel 15.66 6.17 44.08 34.08 55.90 

Crude oil 11.25 4.38 26.85 57.53 42.50 

Contribution to 

others 
42.80 23.10 47.00 51.70 164.70 

Net spillovers 4.40 -4.80 -8.90 9.20 TCI= 41.18 

Note: The FEVD is based upon a monthly VAR model for order 2. The return connectedness index is 

estimated by using and a 10-step-ahead forecast horizon and a 24-month rolling sample. “Net spillovers” 

are the difference between the “contributions to others” and the “from others”.  

  

To construct the visualization of how the individual variables interact with each other, 

we plot a graph of the network among variables in Fig. 3.  

 

Fig. 3. The connectedness network for biodiesel, soybean, highway diesel and crude oil. 

Note: The direction of arrows represents net pairwise directional connectedness between variables. The 

weight of the lines explains the strength of pairwise directional connectedness from strongest (bold line) to 

weakest (fine line). 

 



The direction of arrows explains the net directional connectedness between variables and 

the bold line demonstrates greater spillover than the fine line. It is clear from Fig. 3 that crude oil 

is a net transmitter of shocks to the other three variables whilst soybean is a net receiver of shocks 

from the other variables. Specifically, the results provide evidence that the degree of spillover 

from crude oil to highway diesel is larger than that “to others”. Also, our results indicate that 

biodiesel returns impact the ones of soybean and highway diesel. Moreover, we can identify that 

the magnitude of the return transmission from biodiesel to soybean is stronger than that to 

highway diesel. In general, these findings are consistent with long-term results in wavelet analysis 

which suggested that biodiesel have a significant effect on either soybean or highway diesel, 

meanwhile, crude oil has a great influence on the highway diesel. 

Although the results of static connectedness index provide an overall picture of the 

average spillovers among the variables, it does not exhibit the time-varying connectedness. To 

further investigate the net return spillover between each pair of variables, we conduct rolling-

sample spillover analysis. For dynamic connectedness estimation, a 24-month rolling-sample 

window is utilized to obtain the net pairwise return spillovers. Fig. 4 describes the net pairwise 

connectedness across all pairs in the period May 2009 - December 2020 In general, as observed, 

the net pairwise connectedness exhibits variation across different pairs of variables over time. 

First, when we look at the pairwise connectedness index of biodiesel-soybean, the net spillovers 

are almost all positive, suggesting that shocks from the biodiesel market caused a change in the 

soybean market for most of the period. This finding is consistent with the long-term result in the 

partial wavelet analysis which stipulates that biodiesel positively lead soybean7.To be noted that 

soybean becomes a net transmitter from the middle of 2015 to the end of 2017. This information 

confirms our results presented in Fig. 2 (a.1) and Fig. 2 (a.2): soybean positively leads biodiesel 

 
7 Although the concept of causality is not exactly similar to shock transmission, the dynamic connectedness index estimates bolster 
the causal relationship for the significant periods in wavelet analysis. 

 



in the short-term frequency band in the significant coherence from 2015 to 2017. Second, from 

the plots of dynamic net pairwise connectedness between biodiesel and highway diesel, it results 

that biodiesel is a net transmitter, whereas highway diesel is a net recipient in the period 2009-

2016. Subsequently, highway diesel becomes the net transmitter while biodiesel is the net 

recipient from 2017 to 2020. These results approximate our findings of partial wavelet coherence 

and relative phase in long term (Fig. 2 (b.1) and Fig. 2 (b.2)) to indicate that biodiesel positively 

lead highway diesel before 2016 and the reverse lead-lag relationship exists after 2017.  

Third, in the case of highway diesel-crude oil, it is obvious that crude oil is the net 

transmitter and highway diesel is the net receiver during almost all under examination periods. 

This coincides with the conclusions in the wavelet analysis which suggest crude oil plays a leading 

role in transmitting shocks to highway diesel over the long term. 

Finally, according to Fig. 4, the net pairwise connectedness of biodiesel-crude oil, 

soybean-highway diesel and biodiesel-crude oil share some common features. Such as, the time-

varying connectedness of these three pairs fluctuated much more during the entire sample period 

compared to the other three pairs. Particularly, in the period before 2012, the former variable is 

the primary transmitter, whereas the latter variable is the net receiver. However, we find the 

reverse transmission of shocks running from the latter variable to the former variable in almost 

all of the period from 2013 to 2020. This interesting finding implies the probability that a 

structural change or specific regime shift occurred in 2013.  

 



 

Fig. 4. Net pairwise returns spillovers among biodiesel, soybean, highway diesel and crude oil. 

Note: The dynamic net pairwise connectedness is estimated by using the FEVD on 10-step-ahead forecasts 

and the 24-month rolling sample. Positive values indicate a net transmitter of return spillovers; negative 

values specify a net receiver. 

 

Overall, the outcomes of using the DYCI measure are nearly similar to those using the 

wavelet framework. Therefore, our empirical results prove to be highly robust to the two types of 

methods. 

 



6. Conclusion, policy implications and future research 

Our research utilized the partial wavelet coherence and DYCI approach to analyze the 

connectedness between biodiesel and its related markets in the United States. The majority of the 

results obtained from the experiments shows consistency between the two methods. The primary 

outcomes are as follows. First, the significant-high coherence for biodiesel-soybean, biodiesel-

highway diesel and highway diesel-crude oil is identified both in the short and long term. Second, 

crude oil and biodiesel prices are net transmitters, while soybean and highway diesel prices are 

net receivers. Finally, the crude oil market is the causal source among the markets concerned, 

particularly affecting the highway diesel market.  

 Several policy implications are drawn based on the experimental results as follows. 

 In our analysis, both the wavelet transform and DYCI  method prove that biodiesel 

price induces soybean price movements, which might suggest that the biodiesel 

production led by the governmental policies reinforces the relationship between 

biodiesel price and soybean price. Soybean is used not only as food but also as 

livestock feed. Because the United States is the second-largest soybean exporter to 

various nations such as China and Japan (FAOSTAT, 2021), domestic meat prices 

in such importing countries could be affected by biofuel policies in the United States, 

as demonstrated by Guo and Tanaka (2020). They argue that the U.S. farm-gate price 

of soybean significantly influences the international soybean price. It should be 

reserved that extended biodiesel production in the United States could exacerbate 

food price fluctuations in both domestic and global markets while the policy strategy 

has the potential to reduce carbon dioxide emissions and enhance its national energy 

security during an emergency.       

 Another primary result is that the crude oil market is the source of the spillovers 

among the four markets. More specifically, transmission directions from crude oil to 



biodiesel, highway diesel or soybean are confirmed by the DYCI method. Crude oil 

price directly affects soybean price while indirectly alters soybean price through 

highway diesel and biodiesel prices. Accordingly, stabilizing crude oil prices leads 

to the steadiness of the other three markets. Currently, the Strategic Petroleum 

Reserve held by the U.S. government reaches 621 million barrels in July 2021 (EIA, 

2021) equivalent to approximately 34 days of consumption in the country.8  An 

increase in the petroleum emergency reserve would extend the capacity of buffering 

shocks against highway diesel, biodiesel and soybean markets through price 

transmissions.   

 Shale oil production accounting for more than half of  U.S. crude oil production is 

also associated with petroleum price fluctuations (Owyang and Shell, 2018). For 

example, governor Gavin Newson announced on 23 April 2021 that the California 

government plans to ban hydraulic fracking by 2024 and phase out oil extraction by 

2025 to create a decarbonized transport system and a healthier future for children. If 

many states of the United States adopt such measures, the country would need to 

depend more on foreign oil supply with lowering the level of petroleum self-

sufficiency, which could lead to higher risk exposure of domestic crude oil markets. 

Therefore, the other three markets (i.e. biodiesel, highway diesel, and soybean 

markets) would also face more significant uncertainty.  

 There exists a considerable number of speculators, especially in the futures market 

of crude oil. For instance, the ratio of non-commercial positions to the total of 

commercial and non-commercial positions for Brent crude oil at the Chicago Board 

of Trade has ranged between 10% and 50% since 2011. Futures market price 

movements influence other non-financial commodity markets such as farm-gate, 

 
8 The daily consumption of petroleum reaches 18.19 million barrels (U.S. Energy Information Administration, 2021).  



wholesale and retail markets. The Tobin tax’s implementation on agricultural 

markets was discussed in the policy circle to reduce volatility in agricultural 

commodity prices. The tax is imposed usually on short-term trading to dampen the 

enthusiasm of financial markets. Although the current analysis does not focus on 

financial commodity markets, spot or futures price of crude oil would have close 

relationships with the local crude oil prices, which suggest that inhibiting speculative 

activities could stabilize local crude oil price movements to a certain extent. Based 

on the result that crude oil price volatility is strongly transmitted to biodiesel, 

highway diesel and soybean prices, introducing the Tobin tax to the crude oil spot 

or/and futures market is likely to suppress the volatilities of those markets. However, 

such market intervention of administrative bodies often causes market inefficiency, 

so it is indispensable to consider the balance between the benefit and cost of the 

policy practice.        

In conclusion, it is worth mentioning future research topics. As indicated in the Literature 

review section, despite that a substantial number of economists have tackled the issue of the price 

correlations in biofuel markets until today, the underlying factors behind the closeness of price 

connections have been left uninvestigated. For instance, the intensity of inter-connectivity might 

be affected by biofuel production. More specifically, it could be hypothesized that the larger 

biofuel production leads to the higher intensity of the relationships with producing factors such 

as corn, sugar and soybean. Besides, the price of carbon dioxide emission might influence the 

linkages. Research on the themes will contribute to the policy-making process, filling the missing 

knowledge gap on the mechanism of energy and food securities.  
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