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Abstract 

Agri-food system is one of the economic sectors most at risk from climate change, but it is also a 
significant contributor to it, with greenhouse gas emissions (GHG) from the food supply chain equal to 
one-third of the global anthropogenic total in 2018 (Tubiello et al. 2021). Specifically, crop and livestock 
production within the farm gate contributes more than 50% of the methane (CH4) and 75% of the nitrous 
oxide (N2O) emissions from human activity globally (FAO, 2020). This paper relies on the recent work 
of Shapiro (2021) that firstly analysed the nexus between pollution embodied in traded goods, against 
the actual structure of trade policy (tariffs or non-tariff measures-NTMs). In our contribution we focus 
on agricultural and food products, considering three main pollutants (CO2, CH4, N2O), with the aims 
of answering the following research question: are actual trade policies a tax or a subsidy to total CO2 
(equivalent) emissions embedded in agri-food imported goods? Main findings suggest that for all the 
three pollutants investigated a negative implicit carbon tax is applied, i.e. on average countries applied 
an implicit subsidy on more pollutant imported goods. This estimated implicit subsidy to CO2 emissions 
imported in agri-food products tend to be higher when also the ad-valorem equivalent of non-tariff 
measures (NTMs) is accounted for. By investigating the country-group heterogeneity in the applied tax 
or subsidy to imported CO2, results show that the larger implicit subsidy is applied by the trade policy 
structure of European Union countries. Specifically, Western and Northern European countries have 
among the largest negative environmental biases in trade policy, while more polluting countries, like 
China, India, Russia, Brazil and Mexico, tend to apply smaller (implicit) subsidies. 
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1. Introduction 

When dealing with anthropogenic climate change, and especially with the contribution of economic 

activities to global Green House Gases (GHGs) emissions, one of the most debated issues concerns the 

relationship between international trade and the environment. A large body of literature emphasizes the 

ambiguous role of trade, which can be either beneficial or detrimental for the environment. Within this 

framework, policies play a key role in shaping such a relationship (Copeland et al., 2021). On the one 

hand, increasing exposure to international trade may affect countries’ decisions on whether or not 

tightening up domestic environmental policies, as a form of trade protection. On the other hand, trade 

policies may either enhance environmental degradation, or can be used to protect the environment. 

Against this background, a key issue is whether policies of the last 30 years encouraging progressive 

global trade integration have promoted environmental degradation (Copeland et al., 2021). A recent 

contribution by Shapiro (2021) tries to answer this question, providing evidence that the structure of 

global trade protection has generated an implicit subsidy to trade dirtier goods. Shapiro (2021) provides 

compelling evidence that tariffs and non-tariff barriers (NTBs) are considerably lower in dirtier goods, 

and especially in more “upstream” goods, namely in those products more distant from the final 

consumption (see Antràs et al., 2012). Therefore, trade policies have generated over time a side effect, 

which contributed to considerably increase CO2 emissions, and, thus, fostering climate change.  

The analysis carried out by Shapiro (2021) covers 50 manufacturing industries for the year 2007. 

However, it is worth noticing that when agricultural goods and manufactured food products are removed 

from his sample, the estimated effects reduce their statistical significance, or they even turn non-

significant when tariffs are concerned (see Appendix Table I, line 25). This finding may suggest that the 

role played by the global trade protection structure of the agri-food system may be of some importance 

in this context. Building on this simple conjecture, in this paper we investigate whether the global 

structure of trade protection of the agri-food sector hampers or promotes CO2 emissions of imported 

agricultural and food products. 

Our focus on the agri-food sector is motivated by the following stylize facts. First, trade protection in 

terms of tariffs and NTMs are systematically higher in the agri-food than in other tradable sectors. 

Second, on the one hand, the agri-food is one of the economic sector most affected by climate change 

and, on the other hand, it is also a significant contributor to it, with greenhouse gas emissions from the 

food supply chain equal to one-third of the global anthropogenic total in 2018 (Tubiello et al. 2021). 

According to the IPCC (2014), CO2 accounts for 76 percent of global greenhouse gas emission, methane 

(CH4) accounts for 16 percent and nitrous oxide (N2O) for 6 percent. If the use of fossil fuels for energy 

generation is the single largest source of carbon dioxide emission, the agricultural sector is the major 

source of anthropogenic methane emissions, as it accounts for around a quarter of total emissions, closely 

followed by the energy industry (IEA 2020). The same holds when considering nitrous oxide. More 



specifically, crops and livestock production within the farm gate contribute more than 50% to the global 

methane (CH4) emission and for about 75% of the nitrous oxide (N2O) emissions (FAO, 2020). Against 

this background, the agri-food sector should clearly play a relevant role in GHGs mitigation strategies. 

Our empirical analysis built from Shapiro (2021). However, we depart form this relevant paper in a 

number of important dimensions. First, our analysis does not focused only on CO2 emission, but focused 

on three relevant pollutants for the agri-food sector: Carbon dioxide (CO2), the most important 

greenhouse gas emitted from the use of fuel combustion; nitrous oxide (N2O), mainly emitted from 

agriculture and to a lesser extent industrial activity; methane (CH4), primarily released from agriculture 

and natural gas processing.  

Second, on the specific agri-food sector, we distinguish the emission rates of 25 different agricultural 

and food products. Third, we use more recent and extended estimates of the ad-valorem equivalents 

(AVEs) of NTMs proposed by Niu et al (2018). Last, but not least, in our estimation we used information 

from trade policy based on country tariff lines for seven years of data, allowing a more precise estimation 

of the implicit carbon tax measure.1 Furthermore, instead of using a cross-section of countries, our 

estimates of the implicit CO2 tax/subsidy rate is based on a panel dataset.  

The main findings are in line with those of Shapiro (2021) and suggest that for all the three pollutants 

under investigation a negative implicit carbon tax is applied, i.e., a negative carbon tariff or a positive 

carbon subsidy. These estimated carbon subsidy is, on average, higher when non-tariff measures (NTMs) 

are accounted for. When considering the heterogeneity of the main results across different geographical 

areas, we find larger implicit subsidy to CO2 for European countries. Specifically, Western and Northern 

European countries have among the largest negative environmental biases in trade policy, while more 

polluting countries, like China, India, Russia, Brazil and Mexico, tend to apply smaller subsidies. 

The remainder of this paper is organized as follows. The next section provides the background of this 

paper. Sections 3 and 4 present the data and the methodology used for the empirical analysis. Finally, 

Sections 4 and 5 discuss the main results and conclude.   

 

2. Background  

The role played by international trade in affecting the environment is highly contentious. Such a 

relationship has been investigated so far especially considering how trade liberalization can affect the 

environment through the perspectives of the comparative advantage and economic growth (Cherniwchan 

et al., 2016). On the one hand, the existence of differences in the strictness of environmental regulations 

across countries may be seen as source of comparative advantage, leading the production of dirtier goods 

to be shifted from high- to low-regulation countries, the so-called pollutions havens (Copeland and 

 
1 Shapiro (2021) utilizes AVE of NTMs data from Kee et al (2009). These NTB values are calculated for each six-digit HS 
code, but for a single year around 2000–2003. 



Taylor, 2004). On the other hand, international trade may positively affect the environment, through an 

increase in countries’ economic growth (Copeland and Taylor, 2004), following the mechanism 

highlighted by the well-known Environmental Kuznet Curve (Grossman and Krueger, 1993).  

More in general, there is a large and growing body of literature studying the effect of increasing trade 

exposure on the environment, which touches several aspects. A recent review by Copeland et al. (2021) 

contributes in shedding new light on this topic. The authors present nine relevant stylized facts describing 

the relationship between globalization and environment. From these facts it clearly emerges that trade 

patterns are core to the environmental debate. However, the authors reach the conclusion that despite the 

growing emphasis on this topic, and the availability of new data and tools, there is not conclusive 

evidence on whether trade is beneficial or detrimental for the environment.  

Within this framework, the review highlights that policies play a key role in affecting the relationship 

between trade and environment. On the one hand, an increase in the domestic competitive pressure due 

to the progressive trade integration, may lead some countries to weaken their environmental regulation, 

especially when trade agreements do not allow the use of subsidies and as a consequence environmental 

policies may be used (race to the bottom hypothesis). On the other hand, trade policies may either 

promote or harm the environment. This is due to the fact that countries may use trade policies to protect 

domestic environmental outcomes, by imposing trade restrictions to preserve the environment. On the 

other hand, trade policies may (unintentionally) promote trade of polluting goods, and thus damaging 

the environment. Shapiro (2021) presents compelling evidence of this last hypothesis, giving a 

fundamental contribution to this strand of literature. Importantly, Shapiro (2021) demonstrated that the 

phenomenon described in his paper is “unvoluntary”, a side effect of the process through countries set 

their optimal trade policy. In fact, one of the potential explanations of this stylized fact is related to the 

level of industries’ upstreameness. The level of upstreamness is associated with the position of an 

industry’s output along the vertical product chain, and thus with the distance of a production from final 

consumers (Antràs and Chor 2013). More upstream goods are quite far from the final consumption, 

while more downstream industries are close to the final consumption. However, and importantly, more 

upstream industries are on average dirtier than downstream industries, as the combustion of fossil fuels 

is directly involved in the manufacturing of goods that are then mainly sold as input to other industries. 

As a result, upstream products are dirtier than their downstream counterparts. This fact is of relevant 

importance to explain the results in Shapiro (2021), as more upstream industries are, on average, 

associated to lower trade protection. Such a difference in trade protection has a potential explanation on 

the political economy of trade protection. Final consumers are much less organized than producers 

(Olson, 1965). Therefore, firms downstream exert a strong lobby to have high trade protection on the 

goods they produce, and, at the same time, lower protection for the inputs they use for the production, 



resulting in the so-called tariff escalation, i.e. the level of protection tend to rise moving from up-stream 

(and more polluting) to dawn-stream (and less polluting) consumer goods. 

 

3. Empirical strategy 

To measure differences in trade policy between industry’s ‘dirtiness’, defined considering CO2 

emissions per euro of output, the estimated equation is: 

 

𝑇௝,௦,௧ = 𝛼 𝐶𝑂ଶ(Eq)௝,௦,௧ + 𝛾௝ + 𝜆௧ + 𝜀௝,௦,௧         (1) 
 
where 𝑇௝,௦,௧ is the mean import tariff or the ad valorem equivalent of NTMs that destination country j 

imposes on imported good s, in year t 2; 𝐶𝑂ଶ(Eq)௝,௦,௧ is the tons of CO2 equivalent emitted per euro of 

(country j) imports of product s in year t, 𝛾௝ and 𝜆௧ are (importer) country and time fixed effects,  

respectively.  Destination country dummy 𝛾௝  implies that the regression compares trade policy across 

goods within a country. The idiosyncratic error 𝜀௝,௦,௧ contains all un-modeled determinants of import 

tariff rates (or NTMs). 

We focus on three relevant pollutants in agriculture and food productions: Carbon dioxide (CO2), nitrous 

oxide (N2O), methane (CH4).3 To express all the emissions with a unique measurement unit - the total 

CO2 equivalent - any different pollutant is multiplied by its Global Warming Potential, as given by the 

IPCC Fourth Assessment Report. Thus, for example, the tons of CH4 emitted per euro of Italian imports 

of cattle meat in year t is measured as the mean of emission from cattle meat production in all the partner 

countries from which Italy imports that product, weighted by Italian imports of cattle meat, and 

expressed as CO2 equivalent.4 

The total emissions of single country-product include both direct and indirect emissions for each 

pollutant. The former accounts for those emitted by country to produce product s, the latter (indirect) 

those emitted to produce inputs used in the production of s, and in the production of inputs to inputs, and 

so on.5  

With equation (1) we do not estimate a causal effect of CO2 intensity on tariffs, as this represents just a 

descriptive relation showing the covariance of carbon intensity and trade policy within each country 

(Shapiro, 2021). As a result, the estimated parameter 𝛼 from Eq. 1 represents the duties collected per ton 

of CO2 emitted, or the carbon tariff implicit in existing trade policy. Note, if the estimated 𝛼 is positive 

 
2 In the analysis tariffs and the ad valorem equivalent of NTMs, we also considered them together to obtain an overall rate 
of protection applied by each country and sector. 
3 Emissions from agriculture refers to crops and livestock activities (Stadler et al. 2018). Emissions from crops derive from 
the use of nitrogen and phosphorus as fertilizer; emissions from livestock refer to the emissions produced by the animals, but 
also by cultivation of feed crops (for detail, see Merciai and Schmidt, 2016).  
4 Note that Exiobase database allows to observe the emission rates for only 44 exporting countries, representing however 
the 90% of world GDP.  
5 The emission is calculated from inverting an input-output table. 



coefficient, then it would imply an additional import duty for each additional ton of CO2 embodied in 

the imported product; otherwise, a negative estimated 𝛼 coefficient would represent a carbon ‘subsidy’ 

in trade policy.  

 

The estimation of (1) may suffer from a bias due to measurement errors in the CO2 emission intensity. 

To address this issue, by following the approach undertaken by Shapiro (2021), the equation (1) is 

estimated using also IV regression, by using direct emissions rate of the 10 smallest countries in the 

dataset as instrument for (endogenous) total emission. The first stage of the IV regression of equation 

(1) is: 

 

𝐶𝑂ଶ(Eq)௝,௦,௧ = 𝐶𝑂ଶ(Eq)௝,௦,௧
ௗ + 𝜇௝ + 𝜂௧ + 𝜀௝,௦,௧            (2) 

 
where 𝐶𝑂ଶ(Eq)௝,௦,௧

ௗ  measures direct emissions reflecting, for example, emissions from producing dairy 

products but not emissions embodied in inputs used to produce dairy products, such as milk.6 

 
4. Data source 

To carry out our empirical analyses, data have been gathered from different sources. The variables 

considered include longitudinal data from pollution emissions, trade flows and trade policy measures. 

In what follows, we briefly present the main data and their sources. 

 

Emissions data 

The emissions rates, reported as tons of CO2 (equivalent) emitted per euro of imported goods, are 

computed from Exiobase database (3.8.1 version), a time series of detailed environmentally extended 

multiregional input-output tables that provide data on industry-specific and final demand air emissions 

for 27 pollutants (see Stadler et al, 2018). These rates account for total emissions, calculated from 

inverting an input-output table, meaning that both direct and indirect emissions are taken into account.  

The database reports data on emission rates from 1995 to 2011 for 44 countries (28 EU member states 

plus 16 major economies) and five rest of the world regions. Exiobase uses rectangular supply-use tables 

in a 163 industry by 200 products classification as the main building block. The Exiobase products 

classification allows to distinguish 15 agricultural products (including forestry and fish products), and 

10 food & beverage products and tobacco. 7  

 
6 Shapiro (2021) noted that the validity of the instrument could rise concern about the reflection problem. Nevertheless, the 
possible persistence of measurement error would drive downward the estimated carbon subsidy in trade policies. Moreover, 
he observed that there are not problems concerning omitted variables and reverse causality because the analysis estimates 
the covariance of CO2 intensity and trade policy within each country, not a causal effect of CO2 intensity. 
7 The product classification reported by Exiobase matches with GTAP agri-food sector description, although the former 
allows to split two sectors: ‘Cattle, sheep, goats, horses’ and ‘Meat’ giving more detailed product classification.  



The 44 Exiobase countries are used as exporting countries of agricultural and food products, which 

emissions, weighted on trade, are imported by the 188 countries of our final database.8 As previously 

reported, equation (1) is estimated also using instrumental variable (IV) regression, with direct emissions 

rate of the 10 smallest countries in the dataset used as instrument. Direct emissions of each pollutant 

origin from Exiobase database. 

Table 1 describes the direct and total mean emission rate of agricultural and food products, weighted by 

the value of output. The products are ordered from cleanest to dirtiest based on mean of direct emission 

rates, expressed in tons of CO2 equivalent per million of euro, of the three pollutants considered. The 

cleanest five products are mainly food product, with mean global emissions rate of 68 tons of CO2 per 

million € of output, while the dirtiest five products have a mean global emissions rate of over 5,000 tons 

of CO2 per million € of output.  

Figure 1 shows the mean direct emission rate for each of the 44 Exiobase countries, weighted by the 

value of agriculture and food product output. Each map reports a single pollutant and shows how the 

lowest emission intensities are generally reported by European countries. US and Canada present always 

a medium-high level of emission intensities, while countries of the south of world show always the 

highest Methane and Nitrous oxide emission intensities. What emerge from these maps is that emission 

intensities are skewed and that, considering Carbon dioxide, Methane and Nitrous emission, the five 

dirtiest countries have between 7, 19 and 13 times of the emission intensity of the five cleanest countries, 

respectively. The large differences in emissions intensities across countries suggest that outsourcing 

production of dirty products could have important environmental consequences (Copeland et al, 2021). 

When direct emissions are considered, food products are relatively cleaner than agricultural products, 

i.e. their direct emissions are only a small share, always below 10%, of the total emission rates which 

include emissions embodied in their entire value chain (see table 1). Indeed, by sorting the products by 

total emission rates we find that, among the dirtiest five products there is again paddy rice, but also its 

manufactured ‘processed rice’, which direct emission rate increasing from 413 tons/million€ to 4,474 

tons/million€ when measured as total emissions, thus including the emissions of input used; the same is 

true for ‘cattle’ and its manufactured ‘product of meat cattle’, which emission rate raising from 145 to 

6,424 tons per million euro of output, when moving from direct to total emission intensity. 

 

Trade and trade policy data 

Trade data, used to weight the emissions that are embodied in imported good, come from BACI-CEPII 

database. BACI (Base pour l’Analyse du Commerce International) is a database from CEPII used in 

applied trade analysis that publishes statistics on bilateral trade flows at the product level, on yearly 

 
8 The list of Countries is reported in Table A1 in Appendix. Note that the use of NTMs data reduces to 94 the number of 
countries. 



basis. Bilateral trade data, reported at HS 6-digit, are firstly aggregated at Exiobase/GTAP level using 

the concordance table, then the data are summed at the importer-product level to measure the share of 

country-product imports that origin from each of the 44 exporting countries.  

 

Tariff data come from CEPII MAcMaps-HS6 database, which provides the ad valorem equivalent of 

applied protection for each product importer-exporter at HS 6-digit level for the years 2001, 2004, 2007 

and 2010 .9 To minimize endogeneity problems when aggregating tariff data from HS 6-digit to 

Exiobase/GTAP level, we rely on the concept of "reference groups of countries", where bilateral trade 

are replaced by those of the reference group of countries (Bouet et al, 2008).  

Non-tariff measures (NTMs) come from Niu et. al (2018) estimates, reported as AVEs of NTM at HS 

6-digit level, for 97 countries, for the years 1997, 2000, 2003, 2006, 2009, 2012, 2015.10 To harmonize 

tariff and NTM data, we report the AVEs of NTM using the mean between previous and subsequent 

year data, i.e. the mean between 2000 and 2003 is reported as 2001, between 2003 and 2006 as 2004, 

and so on. This allows to estimate the ‘implicit carbon tax’ using both tariffs and AVEs of NTM 

separately or using total trade protection obtained by summing tariff and AVEs NTM. 

Throughout all the analysis the years considered are 2001, 2004, 2007 and 2010.  

 
 

5. Main results 

Tables 2 reports results of tariffs (or NTMs) regressions, where the key right-hand side variable of 

interest is the total CO2 (equivalent) emissions, estimated by distinguishing the three considered 

pollutants. 11 Odd-numbered columns report OLS estimates of equation (1), even-numbered columns 

report the IV regressions of tariffs on total CO2 intensity, instrumented by direct CO2 intensity (equation 

2).12 Panel A reports estimates for import tariffs only, Panel B results for AVE of NTMs only, Panel C 

reports import tariffs plus AVE of NTMs. 

As discussed before, the parameter α represents the duties collected per ton of CO2, CH4 and N2O 

embedded in trade. Thus, a negative value of the coefficient should be interpreted as an implicit subsidy. 

The results suggest that for all three pollutants a negative implicit carbon tax is applied  

Specifically, Panel A shows how global tariffs represent an implicit subsidy in trade policy, that is 

estimated equal to 3 €/ton, 1 €/ton and 5 €/ton for CO2, CH4 and N2O emissions, respectively.  The IV 

 
9 For some tariffs missing data we made the following little adjustments: for Luxembourg (year 2007 and 2010), we used 
the Belgian tariff; for the Southern African Customs Union (SACU) composed by Botswana, Lesotho, Namibia, South 
Africa, and Swaziland we maintain the same duty.  
10 The work of Niu et al (2018), building on Kee et al. (2009), estimates the ad valorem equivalents of NTMs for 97 
countries at the product level over the period 1997–2015 using the information on the incidence of NTMs from the 
UNCTAD-MAST database. 
11 Note that to exclude outliers, we exclude all the values falling above the 99th percentile of each variable. 
12 First stage regressions of total CO2 emission rate on direct CO2 emission rate are reported in Appendix (Table A2).  



estimates (see odd-numbered columns) report a dimension of the mean subsidy to pollutants emissions 

much larger than the corresponding OLS estimates, and equal to 10 €, 8 € and 25 € per ton, respectively. 

This increase in the estimated coefficients is consistent with attenuation bias in fixed effect estimates.13 

All estimated coefficients are significant, at conventional statistical level.14 

Panel B of Table 2 reports the implicit carbon tax in AVE of non-tariffs measures. The coefficients are 

all negative and larger in (absolute) magnitude, highlighting the presence of an implicit subsidy to 

pollutant emissions also in global AVE of NTMs. Only for CO2 emissions the dimension of this implicit 

subsidy is comparable to what observed for tariffs, while there is a larger magnitude for CH4 and N2O 

emissions. Their implicit subsidy almost doubled, reaching 12 €/ton and 45 €/ton respectively (see 

columns 4 and 6 of table 2). Finally, in Panel C tariffs and NTBs are summed up. The IV regression 

results, reported on the odd-numbered columns, give an average subsidy to CO2 emissions in trade 

policy of about 20 €/ton for CO2, of 16 €/ton for CH4, and of about 58 €/ton for N2O emission.  

To investigate how these implicit subsidies vary by country, we estimate what reported in Panel C 

separately for each country.15 Figure 2 plots the results, obtained using IV specification and by 

distinguishing the three pollutants. We limit the number of countries reported in figure 2 only to the 44 

(relevant) economies included in Exiobase database.  Each red point represents the estimated α 

coefficient derived from single-country regressions; blue dots highlight the position of the 15 countries 

belonging to the European Union during all the analyzed periods.  The countries and their estimated 

points are ordered by the value of the α coefficient. As a rule of thumb, almost every nation has a carbon 

subsidy, since almost all the coefficients taken into consideration are negative.  Specifically, Western 

and Northern European countries have among the largest carbon subsidy in trade policy, with subsidies 

values that changes among the three pollutants and tend to be higher when measured on CO2 equivalent 

of N2O and CH4 emission rates. The values estimated for the EU15 countries show quite relevant and 

heterogeneous subsidies in trade policy, that range, for example, from 37€/ton of Ireland to over 200€/ton 

of Spain when estimated considering N2O emission rate, or from 9€/ton of Spain to 64€/ton of Finland 

when we consider the CH4 emission rate.   

By contrast, Figure 2 shows that more polluting countries like China, India, Russia, Brazil and Mexico 

tend to apply smaller subsidies, that become even a taxation. The general results observed over all 

countries of the dataset are in line with Shapiro (2021) global finding. Indeed, large subsidies in trade 

policy appear in both rich regions like the EU and poor regions like Africa, as well as small subsidies 

appear in both rich countries like USA and poorer countries like Rwanda (see Figure 1A in Appendix). 

 
13 The first-stage Kleibergen-Paap F-statistic reported in the table shows that the used instruments are strong, as expected 
being direct emissions a large part of total emissions.  
14 Note that these results slightly change in magnitude if estimated by reducing the number of importer countries to the only 
94 countries that presents AVE of NTMs data. 
15 We use equation (1) and (2), by excluding country fixed effects. 



Also, the lack of predictable patterns is consistent with Shapiro (2021) findings, whose interpretation is 

that these implicit carbon taxes are due to political economy forces that are correlated with CO2 emission 

rate.  

 

1. Conclusions 

This paper relies on the recent work of Shapiro (2021) that firstly compares the measure of pollution 

embodied in traded goods against the actual structure of trade policy (tariffs or NTMs). By focusing the 

analysis on the agri-food sector, we check whether trade policy of countries taxes or subsidies the 

pollution emissions of imported agricultural and food products. Finding suggest that, for all the three 

pollutants more involved in GHG emission in agriculture, a negative implicit carbon tax is applied. The 

result can be quantified as an implicit average subsidy of 9.8, 24.5, or 7.7 euro per ton of CO2-equivalent 

emissions measured for CO2, N2O, and CH4, respectively. These estimated subsidies are higher when 

AVE of NTMs is considered. We also estimated separately for 44 importer countries (representing the 

90% of world GDP), the implicit subsidy on CO2 of imported products induced by the respective the 

tariff structure. Overall, for the three pollutants, we find large implicit subsidy to CO2 for European 

countries. Specifically, Western and Northern European countries have among the largest negative 

environmental biases in trade policy, while more polluting countries, like China, India, Russia, Brazil 

and Mexico, tend to apply smaller subsidies, or even tax. 

These findings have at least two relevant policy implications. The first concerns the potential application 

and impact of the new trade measure of border carbon adjustments (BCAs). The measure combines 

environmental and trade policies by levying border adjustments based on the estimated social costs of 

GHG. As part of a plan to decarbonize its economy by 2050, the European Union is considering the 

introduction of a BCA mechanism, to reduce the risk of carbon leakage and to level the field for 

European industries working towards decarbonization of their production processes. However, we 

observed that countries, and especially European countries, are imposing greater protection on clean 

than on dirty agri-food products, by creating an implicit carbon subsidy rather than moving to the 

adoption of a carbon tariff. According to the current Commission’s proposal, BCA will begin on 1 

January 2023 and will not apply to agricultural products, although in 2026 the Commission will evaluate 

whether to extend the scope to include other products, and many amendments to include agricultural 

products have already been presented.  

The second implication concerns the “Farm to Fork-F2F” Strategy. At the heart of the European Green 

Deal, the EU wants to redesign its agri-food systems, by supporting a global transition toward 

environmental sustainability, also through its trade policies. However, the EU import of agricultural 

products seems destinated to increase as an effect also of F2F (decrease in EU productivity due to the 

reduction in the use of pesticides and nutrients as well as the increase in organic farming) by 2030. 



Hence, as an effect of our findings, showing that current EU trade policies represent an implicit subsidy 

to the import of more polluting agricultural and food products, the F2F strategy will probably result in a 

global increase, and not decrease, of total emissions because domestically produced goods will be 

replaced by imported goods, with high emission intensities. This potential and required reduction in the 

emissions in European countries could be then compensated from an increase of GHGs emissions in 

those countries that source these ‘dirty’ products to Europe, a phenomenon known as carbon leakage. 
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Figure 1 Direct Emission Rate (year 2011) from Agriculture and Food Production 

(A) Carbon Dioxide (CO2) 

 

(B) Methane (CH4) 

 

(C) Nitrous Oxide (N2O) 

 

Notes: Emission rates values are expressed as tons of CO2 equivalent per 1000 euro of output, weighted by the 
value of output. 



Figure 2 – Trade Protection and Pollutant Emission Rates (CO2 equivalent), by Country 

 

 
 

Notes: Implicit carbon tax is estimated for 44 (Exiobase) countries from a regression of import tariffs plus ad 
valorem equivalent of NTMs, on total CO2 / CH4 / N2O emission rate (ton/€). Total emission rate is instrumented 
with the direct emission rate, measured in the same product but in the ten smallest other countries. A separate 
regression is run for each country. The observed data come from the years 2001, 2004, 2007, 2010. Red circle are 
the estimated coefficients (blue dots highlight EU15 countries), vertical bars are robust CI 95 %. 
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Table 1 – Emission rates of Agricultural and Food products (year 2011) 

 

Notes: Emission rates values are expressed as tons of CO2 equivalent per million euro of output and refer to the 
mean value across countries, weighted by the value of output. Data come from Exiobase. Tariff data come from 
CEPII MAcMaps-HS6 database; NTMs, reported as AVEs of NTM, come from Niu et. al (2018) estimation. 
Average tariff and NTM refer to year 2010. 

(*) Food products. 

  

Output Import AVE
CO2 CH4 N2O TOT CO2 CH4 N2O TOT (€ Billions) Tariff NTMs

* Food products nec 43           2            3            49           522         215         212         949           1,673      13% 98%
* Products of Vegetable oils and fats 36           13           2            51           463         174         349         986           189         10% 85%

Fish and other fishing products (05) 64           0            0            65           215         50           13           278           244         12% 56%
* Sugar 70           1            4            75           579         214         240         1,034        85           21% 103%
* Meat products nec 67           22           10           98           427         311         147         884           202         19% 57%

Mean of cleanest 5 products 56          8            4            68          441        193        192        826          479        15% 80%
* Products of meat poultry 58           42           16           117         466         190         315         971           141         28% 31%

Products of forestry, logging (02) 114         8            16           137         263         42           26           331           210         5% 33%
* Products of meat cattle 91           37           16           145         573         3,955      1,897      6,424        142         26% 62%
* Products of meat pigs 64           63           25           152         449         272         309         1,030        117         22% 29%
* Dairy products 131         18           8            157         532         896         279         1,707        320         19% 65%

Animal products nec 96           59           33           188         542         550         156         1,248        67           13% 70%
Crops nec 136         106         120         363         412         198         141         751           244         11% 57%

* Processed rice 392         11           10           413         1,323      2,780      372         4,474        100         17% 119%
Vegetables, fruit, nuts 151         2            328         481         415         56           350         821           561         15% 69%
Poultry 124         8            502         634         525         181         669         1,375        166         9% 38%
Pigs 130         164         506         799         483         341         616         1,439        138         15% 72%
Plant-based fibers 420         15           430         865         1,009      681         489         2,179        50           4% 16%
Sugar cane,  sugar beet 356         77           452         885         677         246         523         1,446        49           9% 24%
Oil seeds 286         19           758         1,063      574         172         815         1,561        101         7% 64%
Cereal grains nec 271         71           836         1,179      676         272         894         1,842        187         11% 55%
Wheat 428         6            1,055      1,490      1,124      217         1,141      2,483        114         8% 63%
Meat animals nec 222         1,814      1,728      3,764      622         2,464      1,811      4,897        39           10% 11%
Paddy rice 358         4,060      386         4,804      1,254      5,532      513         7,299        128         17% 103%
Wool,  silk-worm cocoons 3,812      2,837      919         7,567      4,221      3,655      980         8,856        5             4% 46%
Cattle 372         5,683      2,686      8,741      703         6,331      3,054      10,088      145         12% 49%
Mean of dirtiest 5 products 1,038     2,880     1,355     5,273     1,585     3,640     1,500     6,725       86          10% 54%

Direct Emission Rate (ton/million€) Total Emission Rate (ton/million€)



Table 2 – Trade Policies and CO2 emission rates 

  PANEL A: Import Tariffs 

 OLS IV OLS IV OLS IV 

 (1) (2) (3) (4) (5) (6) 
CO2 Emiss -3.3761*** -9.7755***         

 (0.2652) (1.0647)     
CH4 Emiss   -0.7359*** -7.7565***   

   (0.2427) (1.0621)   
N2O Emiss     -4.9229*** -24.8252*** 
          (0.6050) (1.8179) 
No. of obs. 15,877 15,784 16,032 15,816 15,885 15,771 
R-Sq 0.21 0.20 0.20 0.19 0.20 0.16 
K-P F statistic  124.1  677.2  462.6 
        
  PANEL B: AVE of Non-Tariffs Measures 

 OLS IV OLS IV OLS IV 
  (1) (2) (3) (4) (5) (6) 
CO2 Emiss -1.3476** -9.9230**     

 (0.5772) (3.8881)     
CH4 Emiss   -3.0987** -11.6880***   

   (1.2953) (2.7015)   
N2O Emiss     -12.3872*** -44.5588*** 

     (2.6371) (6.0366) 
No. of obs. 6,824 6,758 6,866 6,799 6,804 6,749 
R-Sq 0.27 0.27 0.28 0.27 0.28 0.27 
K-P F statistic  79.3  428.6  233.9 

       
  PANEL C: Import Tariffs + AVE of Non-Tariffs Measures 

 OLS IV OLS IV OLS IV 
  (1) (2) (3) (4) (5) (6) 
CO2 Emiss -5.0376*** -20.2173***     

 (1.4855) (4.7380)     
CH4 Emiss   -3.9612*** -16.0624***   

   (1.4774) (4.1425)   
N2O Emiss     -17.8866*** -57.9555*** 

     (2.9079) (7.4415) 
No. of obs. 6,749 6,707 6,815 6,687 6,751 6,696 
R-Sq 0.26 0.25 0.26 0.25 0.26 0.24 
K-P F statistic  79.2  632.3  239.2 

Notes: CO2, CH4 and N2O emission rates are expressed in CO2 equivalent, measured in metric tons per Euro of 
output and weighted by the value of imports. Importer tariffs are weighted on the values of “reference groups of 
countries”, AVE of NTMs are weighted on the values of imports. All regressions include country dummies, year 
dummies and constant, not reported. OLS is ordinary least squares, IV is instrumental variables. The instruments 
are the direct emission rates measured in the same industry but in the ten smallest other countries. K-P F statistic 
denotes the Kleibergen-Paap Wald F statistic to test the validity of the instrumental variable. The observed data 
come from the years 2001, 2004, 2007, 2010. Robust standard errors in parentheses. Asterisks denote p value: * 
< 0.10, ** < 0.05,  *** < 0.01. 

 

 

  



APPENDIX 

 

Table A1 – List of countries  

  Importing countries  
* Afghanistan * Colombia * Hungary  Montenegro  Solomon Islands 

 Angola  Comoros * Indonesia  Mongolia  Sierra Leone 

 Albania * Cabo Verde * India  Mozambique * El Salvador 

 United Arab Em. * Costa Rica * Ireland  Mauritania  Serbia 
* Argentina * Cuba  Iran, Islamic Rep.  Montserrat  Suriname 

 Armenia * Cyprus  Iceland * Mauritius * Slovak Republic 

 Antigua & Barbuda * Czech Republic * Israel * Malawi * Slovenia 
* Australia * Germany * Italy * Malaysia * Sweden 
* Austria  Djibouti * Jamaica  Mayotte  Swaziland 

 Azerbaijan  Dominica  Jordan  Namibia  Seychelles 

 Burundi * Denmark * Japan * Niger  Syrian Arab Rep. 
* Belgium  Dominican Rep. * Kazakhstan * Nigeria  Chad 

 Benin  Algeria  Kenya * Nicaragua * Togo 
* Burkina Faso * Ecuador  Kyrgyz Republic * Netherlands * Thailand 

 Bangladesh * Egypt, Arab Rep. * Cambodia  Norway  Tajikistan 
* Bulgaria * Spain  Kiribati * Nepal  Turkmenistan 

 Bahrain * Estonia  St. Kitts & Nevis * New Zealand  Tonga 

 Bahamas, The  Ethiopia * Korea, Rep.  Oman * Trinidad and Tobago 

 Bosnia and Herzeg. * Finland  Kuwait * Pakistan * Tunisia 

 Belarus  Fiji  Lao PDR * Panama * Turkey 

 Belize * France * Lebanon * Peru  Tuvalu 

 Bermuda  Micronesia  Libya * Philippines  Taiwan, China 
* Bolivia  Gabon  St. Lucia  Palau * Tanzania 
* Brazil * United Kingdom * Sri Lanka  Papua N.Guinea  Uganda 

 Barbados  Georgia  Lesotho * Poland * Ukraine 
* Brunei Darussalam * Ghana * Lithuania * Portugal * Uruguay 

 Bhutan * Guinea * Luxembourg * Paraguay * United States 

 Botswana * Gambia, The * Latvia  Palestine  Uzbekistan 

 Central African Rep.  Guinea-Bissau  Macao  French Polynesia  St.Vincent& Gren. 
* Canada  Equatorial Guinea * Morocco  Qatar * Venezuela, RB 

 Switzerland * Greece  Moldova * Romania * Vietnam 
* Chile  Grenada * Madagascar * Russian Fed.  Vanuatu 
* China * Guatemala  Maldives * Rwanda  Yemen, Rep. 
* Cote d'Ivoire  Guyana * Mexico  Saudi Arabia * South Africa 

 Cameroon * Hong Kong   Macedonia, FYR  Serbia and Mont.  Zambia 

 Dem.Rep.Congo * Honduras * Mali  Sudan  Zimbabwe 

 Congo, Rep.  Croatia * Malta * Senegal   
  Cook Islands   Haiti   Myanmar * Singapore     

Notes: All listed countries are used in PANEL A of Table 2 (using importer tariffs); PANEL B and PANEL C 
include only countries marked by (*) because the use of NTMs data reduces to 94 the number of countries. 

 



Table A2 – First stage IV regression  

  Tariffs 

 CO2 Emiss CH4 Emiss N2O Emiss 

 (1) (2) (3) 
CO2 Emiss IV 0.5575***     

 (0.0500)   
CH4 Emiss IV  2.6902***  

  (0.1034)  
N2O Emiss IV   1.7571*** 
      (0.0817) 
No. of obs. 15,877 16,032 15,885 
K-P F statistic 124 677 463 
     
  AVE of Non-Tariffs Measures 

 CO2 Emiss CH4 Emiss N2O Emiss 
  (1) (2) (3) 
CO2 Emiss IV 0.5524***   

 (0.0620)   
CH4 Emiss IV  5.1315***  

  (0.2479)  
N2O Emiss IV   1.8332*** 

   (0.1199) 
No. of obs. 6,824 6,866 6,804 
K-P F statistic 79 429 234 

    
  Tariffs + AVE of Non-Tariffs Measures 

 CO2 Emiss CH4 Emiss N2O Emiss 
  (1) (2) (3) 
CO2 Emiss IV 0.5554***   

 (0.0624)   
CH4 Emiss IV  4.2071***  

  (0.1673)  
N2O Emiss IV   1.8582*** 

   (0.1201) 
No. of obs. 6,749 6,815 6,751 
K-P F statistic 79 632 239 

Notes: CO2, CH4 and N2O emission rates are expressed in CO2 equivalent, 
measured in metric tons per Euro of output and weighted by the value of 
imports. IV is instrumental variables. The instruments are the direct emission 
rates measured in the same industry but in the ten smallest other countries. K-P 
F statistic denotes the Kleibergen-Paap Wald F statistic to test the validity of 
the instrumental variable. The observed data come from the years 2001, 2004, 
2007, 2010. Robust standard errors in parentheses. Asterisks denote p value: * 
< 0.10, ** < 0.05,  *** < 0.01. 



Figure A1. Implicit Tax in Trade Policy, by Country 

A. Covariance of Trade Protection and CO2 emission rates 

 

B. Covariance of Trade Protection and CH4 Emission Rates 

 

C. Covariance of Trade Protection and N2O Emission Rates 

 
Notes: Implicit carbon tax is estimated for 94 countries from a regression of import tariffs plus AVE of NTMs, on total CO2 / CH4 / N2O emission rate 
(ton/€). Total emission rate is instrumented with the direct emission rate, measured in the same product but in the ten smallest other countries. A separate 
regression is run for each country. The observed data come from the years 2001, 2004, 2007, 2010. 


