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Abstract 

Farmer is the profession closest to the natural environment and is often at the forefront of the 
fight against climate change, and the changes compared to historical conditions could be seen as a 
kind of shock to farmer’s life. In this research, we examine the effect of weather shocks on three 
adaptive decisions by farmers, labor allocation, protective facilities, and conservation agriculture 
practice. Spatial seemingly unrelated regressions method is used to deal with the problem of 
spatial autocorrelation and correlated disturbances between equations. Using census data of 
vegetable farm households and historical weather data in Taiwan, our findings indicate that the 
effects of positive and negative shocks are asymmetric. Rainy shocks increase the ratio of 
households engaged in non-agricultural work and the adoption rate of organic practices, while 
drier shocks do not. The ratio of greenhouse increases with higher temperatures. We also observe 
that experience moderates the effects resulting from rainfall shocks. Furthermore, among specific 
groups of farm households, we found that elderly farm households show stronger effects on the 
nonfarming ratio compared to others, whereas the behaviors of mini farm households are less 
likely to be affected by weather shocks. 
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1. Introduction  

Effects of climate change are highly discussed over past years. Phenomenon of climate 
change present in higher sea level, global warming, increasing frequency and intensity of storm 
and flooding, shifting season, etc. (Koetse & Rietveld, 2009). Agriculture had been taken as the 
sector closest to the natural environment and often at the forefront of the fight against climate 
change. In previous literature, they sometimes examine for how climatic factors (e.g., 
temperature and rainfall) matter farmers’ life (Mendelsohn, 2014; Luh & Chang, 2021), and there 
are also studies focus on the effect of longer-term changes in temperature and precipitation on 
agricultural sector (Burke & Emerick, 2016), to emphasize the concept of climate change. 
Besides the mean climate change, climate variability and extreme events also yield significant 
damage and impacts on farmers’ production and behaviors (Kurukulasuriya & Rosenthal ,2013; 
Mahato, 2014). In such extreme events, precipitation shocks—floods and droughts—are often 
discussed (Salazar-Espinoza et al., 2015; Mehar et al., 2016; Khanal et al., 2018; Carrillo, 2020). 
Floods may lead to fields being inundated, damaging crops and affecting their growth. Soil 
degradation, increased vulnerability to pests and diseases, as well as erosion and damage to 
irrigation infrastructure, are common consequences of floods on agricultural land. Conversely, 
droughts can result in water scarcity, limiting crop growth, reducing yields, and potentially 
causing crop failure. These shocks can also severely affect farmers' livelihoods as their primary 
income source is often derived from agriculture. Compared to the precipitation extreme events 
like floods and droughts, in temperature, continuous warming trends tend to receive more 
attention (Burke & Emerick, 2016).  

In certain studies, shock is defined as deviations from historical conditions, indicating 
changes that occur beyond what was previously observed (Chuang, 2019; Matsuura et al., 2023; 
Carrillo, 2020). Carrillo (2020) defined floods and droughts as rainfall exceeding or falling below 
one standard deviation from the 20-year historical average. As Chuang (2019) and Matsuura et al. 
(2023) defined in their studies, climate change leads to the shocks which are quantified as the 
variation from long-run historical average. In this research, we apply the concept of such shocks, 
to observe more nuanced effects, as farmers might still perceive the changing climate despite not 
reaching the extremes. However, for farmers, while these shocks are quantified as values relative 
to historical conditions, the positive and negative shocks lead to two different kinds of extremes. 
These two shocks may lead to varying levels of perception and result in different adaptation 
behaviors by farmers. To our knowledge, the inconsistency in their directions or even asymmetry 
hasn't been extensively discussed in past research about farmers’ adaptation. In the context of 
climate change, a notable rise in precipitation variability is observed while the average rainfall 
has not shown a clear upward or downward trend over the long term (Thornton et al., 2014; 
Hatfield & Walthall, 2014; Kurukulasuriya & Rosenthal, 2013), so it's crucial to explore whether 
the asymmetry exists in two directions. Moreover, even under global warming conditions, certain 
regions might experience instances of lower temperatures, and the effects of such shocks remain 



unclear. So, not only considering for the rainfall shock as in previous studies, our research 
extends similar definition and make examination on temperature shocks.  

To address the gaps in previous research, the primary objective of this study is to examine 
the inconsistent and even asymmetric effects of weather shocks. The inconsistency manifests as a 
greater likelihood of increased adaptive behavior with deeper shocks, meaning that when the 
shock is negative, smaller (larger absolute value) shock is more likely to prompt farmers to adapt, 
and vice versa. Figure 1 depicts the effect of weather shocks (x-axis) on the probability of 
adoption (y-axis). In Figure 1(a), the inconsistency is represented by its V-shaped pattern. Under 
this inconsistency, two kinds of asymmetric scenarios may arise. When farmers exhibit stronger 
adaptive responses to positive shocks than negative ones, the pattern is presented as Figure 1(b). 
Conversely, when farmers exhibit weaker adaptive responses to positive shocks compared to 
negative ones, pattern emerges in Figure 1(c). Understanding this asymmetry can help us more 
comprehensively assess and address the impacts of various weather shocks 

 
Figure 1 Patterns of inconsistent and asymmetric effects on probability of adaptation 
Source: This study. 

Besides, the past weather experience can have various impacts on farmers. It can influence 
farmers' perception or opinion of current and future climate change. If farmers have experienced 
extreme weather events or climatic anomalies, they may be more likely to recognize the presence 
of climate change and could become more attentive and sensitive to climate-related risks (Howe, 
2021). However, the findings for this relationship are not clear (Sisco, 2021). Marlon et al.’s 
(2019) study showed that the perception of climate change is not significantly affected by their 
individual experience, but get noticed by the reminder from experts. Additionally, past weather 
experiences also influence farmers' coping and adaptation strategies. Regarding the weather 
experience, most of past studies have focused more on how it influences attitudes about climate 
change rather than adaptive behavior so far (Sisco, 2021). Farmers with rich climate experiences 
may be more inclined to adjust planting seasons, change crop varieties, adopt new cultivation 
techniques, or invest in the insurance as ways to cope with continually changing climatic 
conditions, such as the consequence in Khanal et al. (2018) indicated the experience of flood or 



drought make higher probability to do some adaptation due to risk aversion. However, despite the 
perception was enhanced by the experience, people adapt less due to the absence of technique or 
knowledge support (Hamilton-Webb et al., 2017). There are also studies such as Chuang (2019) 
discuss for how it influences the response when farmers facing shocks, reporting that the farmers 
living in risky area, e.g. higher climate variation in the past, will moderate the response to the 
weather shocks since they have already done some adaptation. Therefore, the heterogeneity 
should exist within farmers with different experience about long-term weather conditions. This 
research will show how weather experience interact with the asymmetric effects of shocks.  

To cope with the damage caused by climate change, adaptive strategies emerge among 
farmers. Numerous adaptive strategies have been discussed in past studies focused on the 
agricultural sector (Gutu et al., 2012; Mehar et al., 2016; Huang et al., 2020; Branco & Féres, 
2021). Smit and Skinner (2002) categorizes adaptive behaviors into four main types: technical 
improvement, farming practice, financial management and seeking external assistance. Some 
studies concentrate on one specific adaptive behavior, examining determinants that enhance 
adoption or their impact on farmers' welfare (Salazar-Espinoza et al., 2015; Huang et al., 2020), 
while others compare different adaptive behaviors (Mehar et al., 2016; Gutu et al., 2012; Tofu et 
al., 2022). In this research, we examine three decision equations on each adaptive strategy 
respectively. However, the disturbances in equations are likely correlated, given that the strategies 
originate from the same households. The seemingly unrelated regression (SUR) method is often 
used to address this issue and makes estimation more efficient than that generated by respective 
equations of least squares (Zellner, 1962; Angulo et al., 2010; Katchova, 2013). In a related topic, 
Mulwa and Visser (2020) also use SUR to explore the effect of weather shocks on two adaptive 
strategies—crop and livestock diversification. Furthermore, when using cross-section data, 
estimation under the assumption of spatial independence may lead to incorrect conclusions 
regarding spatial spill-over effects or spatial heterogeneity (Anselin, 1988). Therefore, this 
research applies the spatial seemingly unrelated regressions method to consider these factors. 
With full consideration of inconsistent effects, weather experience, spatial dependence, and 
correlation between equations, this study provides a more comprehensive view of how weather 
shocks affect farm households' behaviors. 

This research focus on the vegetable farm households in Taiwan. Among numerous studies 
reporting the effect of climate change in human being’s economic activities no matter in 
developed countries or developing countries, and the damage of global warming had been found 
deeper in the hotter areas (Acevedo et al., 2020). Muñoz-Rojas et al. (2017) also mentioned that 
in humid tropical regions, an increase in the intensity of rainfall events may more easily lead to 
temporary flooding. Taiwan is situated in East Asia, approximately between 21.45-25.56°N 
latitude and 119.18-124.34°E longitude where belongs to subtropical region. Taiwan is an island 
that relies to a certain extent on import and export trade in various aspects of life. Its own 
agricultural sector plays an extremely important role in the country's food security. In addition to 



serving as an example of a humid tropical region more susceptible to climate change, the 
characteristics of Taiwan's farmers, such as their intensive practices and small scale, are 
considered factors that may reduce their resilience when facing the climate change (Cerri et al., 
2007). This underscores the importance of studying the climate impacts on the behavior of 
farmers in the region of Taiwan. 

In the following chapter, the data and sample characteristics used in this study will be 
introduced. Section 3 will outline how this research identifies asymmetric effects, considers the 
interaction effects of experience, and presents the empirical model framework. Section 4 will 
present the results of this study, followed by a conclusion in section 5. 

 
2. Empirical Method 

2.1 The asymmetric effects and experience interaction  
This research focuses on three kinds of adaptive behavior by farm households. We address 

the effects of weather shocks with consideration of socio-economic characteristics of operators, 
and the human capital of household members for vegetable farm households. By combining 
climate data and agricultural census data at the township level, this research examines the 
existence of spatial lag and error dependence, and applies the spatial seemingly unrelated 
regressions method. The original adaptive behavior equations can be specified as following: 

𝑌𝑌15,𝑗𝑗 = 𝛼𝛼1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + 𝛼𝛼𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 + 𝛽𝛽𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉
+ 𝑢𝑢𝑗𝑗, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 = 1, 2, 3 

(1) 

In the above equation, the outcome variable, 𝑌𝑌15,𝑗𝑗, is the adaptive behavior j (represent for 
non-agricultural share, greenhouse ratio or organic adoption) of the farm household. The weather 
shocks in 2014 are denoted by 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14, the corresponding coefficients 
are 𝛼𝛼1 and 𝛽𝛽1, which show the effects of weather shocks. The long-run weather conditions, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15, are also controlled, and coefficients are 𝛼𝛼𝐿𝐿𝐿𝐿 and 𝛽𝛽𝐿𝐿𝐿𝐿, respectively. 
The vectors of farm’s socio-economic characteristics in 2015 and associated coefficients are 
denoted by 𝐗𝐗𝟏𝟏𝟏𝟏 and 𝛉𝛉. To identify the interaction effect of past weather experience, we can 
capture the effect through the interaction term of the standard deviation of average daily rainfall 
(temperature) from 1995 to 2014, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15, along with the weather 
shock variable. The corresponding coefficients, 𝛼𝛼2 and 𝛽𝛽2, present how the weather experience 
affect the effect of shocks.  

𝑌𝑌15,𝑗𝑗 = 𝛼𝛼1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + 𝛼𝛼2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 + 𝛼𝛼3𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15
+ 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15
+ 𝛼𝛼𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 + 𝛽𝛽𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 = 1, 2, 3 

(2) 

Due to one of the primary objectives of this study being to investigate whether there are 
asymmetric effects of weather shocks between positive and negative values, we also create 



interaction terms using a dummy variable, 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. When the shock takes positive 
value, the dummy variable equals to 1 and 0 otherwise. This allows us to examine the differences 
in effects in both directions. The model is specified as equation (3), and expanded as equation (4). 

𝑌𝑌15,𝑗𝑗 = (𝛼𝛼1 + 𝛼𝛼1′ ∗ 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + (𝛼𝛼2 + 𝛼𝛼2′ ∗ 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15
+ (𝛽𝛽1 + 𝛽𝛽1′ ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + (𝛽𝛽2 + 𝛽𝛽2′ ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14
∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝛼𝛼𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 + 𝛽𝛽𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗 

 = 𝛼𝛼1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 + 𝛼𝛼1′𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛼𝛼2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15
+ 𝛼𝛼2′𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14
+ 𝛽𝛽1′𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15
+ 𝛽𝛽2′𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜14 ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝛼𝛼𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅15
+ 𝛽𝛽𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇15 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 = 1, 2, 3 

 
 

(3) 
 
 
 
 

(4) 
 
2.2 Spatial seemingly unrelated regressions method 

As the presence of spatial dependence and potential correlation in error terms between 
equations, the spatial seemingly unrelated regressions (spatial SUR) method can be used to deal 
with them (Mínguez et al., 2022). The adoption equations of farm households were shown in the 
previous section. While SUR model can be used in multiple panel data in Anselin’s (1988) case, 
it could be applied into the analyses for multiple equations in one time period. Using the cross-
sectional data in 2015, this research constructs three behavior equations simultaneously in SUR 
model, where the number of equations, 𝐺𝐺, equals to three, time period, 𝑇𝑇, equals to one and 𝑁𝑁 
individuals in our data, following the structure of method in Mínguez et al. (2022) and Anselin 
(1988). The basic SUR model without spatial consideration can be shown as equation (5) with 𝐀𝐀 
and 𝛋𝛋 denote for the vector of all related weather variables and corresponding coefficients. 

𝑌𝑌15,𝑗𝑗 = 𝐀𝐀𝒋𝒋𝛋𝛋𝒋𝒋 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 = 1, …  𝐺𝐺 (5) 

Specifically, the serial dependence in the errors is not explicitly parameterized, but estimated 
in the 𝐺𝐺 × 𝐺𝐺 covariance matrix ∑, where ∑ = �𝜌𝜌𝑗𝑗𝑗𝑗; 𝑗𝑗, 𝑠𝑠 = 1, … , 𝐺𝐺�. This approach allows us to 
simultaneously estimate the parameters of all three equations at one period, leveraging the 
information contained in the cross-sectional data. By using the spatial data of township level, the 
potential spatial effects might be raised from spatial dependence on outcome variables, 
covariates, and error term (Mínguez et al., 2022; Elhorst, 2014). To simplify the effect of weather 
shocks, this research conducts the spatial econometric model as following, without spatial effect 
on the covariates. 

𝑌𝑌15,𝑗𝑗 = ρ𝑗𝑗𝐖𝐖j𝑌𝑌15,𝑗𝑗 + 𝐀𝐀𝐣𝐣𝛋𝛋𝒋𝒋 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗 ⟹ 𝐀𝐀𝒋𝒋𝑌𝑌15,𝑗𝑗 = 𝐀𝐀𝐣𝐣𝛋𝛋𝒋𝒋 + 𝐗𝐗𝟏𝟏𝟏𝟏𝛉𝛉 + 𝑢𝑢𝑗𝑗 

𝑢𝑢𝑗𝑗 = 𝛿𝛿𝑗𝑗𝐖𝐖j𝑢𝑢𝑗𝑗 + 𝜀𝜀𝑗𝑗 ⟹ 𝐁𝐁𝒋𝒋𝑢𝑢𝑗𝑗 = 𝜀𝜀𝑗𝑗,    

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸�𝜀𝜀𝑗𝑗� = 0, 𝐸𝐸�𝜀𝜀𝑗𝑗𝜀𝜀𝑠𝑠� =  𝜌𝜌𝑗𝑗𝑗𝑗𝐼𝐼,  

(6) 



𝐀𝐀𝒋𝒋 = 𝐼𝐼 − ρ𝑗𝑗𝐖𝐖j, 𝐁𝐁𝒋𝒋 = 𝐼𝐼 − 𝛿𝛿𝑗𝑗𝐖𝐖j, 𝑗𝑗, 𝑠𝑠 = 1, … , 𝐺𝐺 

In equation (6), the spatial weight matrix, 𝐖𝐖j, is specified by the spectral-normalized 
inverse-distance spatial weighting matrix between townships, with the associated parameters for 
spatial autocorrelation denoted as ρ𝑗𝑗 and 𝛿𝛿𝑗𝑗 respectively for the outcome variable and error 
term, and 𝐼𝐼 represents the identity matrix. Under the construction of equation (6), different 
constraints lead to four kinds of spatial SUR model, labeled as types A to D. 

A. The SUR-SIM (spatial independence model): when ρ𝑗𝑗 = 0; 𝛿𝛿𝑗𝑗 = 0, ∀𝑗𝑗 

B. The SUR-SLM (spatial lag model): when ρ𝑗𝑗 ≠ 0; 𝛿𝛿𝑗𝑗 = 0, ∀𝑗𝑗 

C. The SUR-SEM (spatial independence model): when ρ𝑗𝑗 = 0; 𝛿𝛿𝑗𝑗 ≠ 0, ∀𝑗𝑗 

D. The SUR-SARAR (spatial autoregressive with spatial error model): when ρ𝑗𝑗 ≠ 0; 𝛿𝛿𝑗𝑗 ≠ 0, ∀𝑗𝑗 

To identify which model should be used in our case, the tests for the spatial dependence in 
seemingly unrelated regression model in Mur et al. (2010) are done before estimation of spatial 
seemingly unrelated regression. The LM statistics show whether the null hypothesis of no spatial 
dependence in outcome variable (adaptive behaviors) or error term. The results of tests show that 
all the models reject the null hypothesis of no spatial dependence on outcome variables and error 
terms in three behavior equations. Therefore, the following analyses use the spatial autoregressive 
with spatial error SUR model.  
 
3. Data and Sample 

The dataset for the socio-economic characteristics of farm households, including the 
characteristics of operator, farm and family members, is drawn from the 2015 Census of 
Agriculture, Forestry, Fishery and Animal Husbandry (hereafter, Agriculture Census). The shock 
of two kinds of weather condition accounts for the rainfall and temperature. The dataset of 
weather conditions shows the daily average temperature and rainfall across years from Taiwan 
Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP)2. Since it 
is more reasonable that farmers devise strategies for the current year by considering the shocks 
encountered in the previous year than the current one (Salazar-Espinoza et al., 2014). In this 
study, weather shock is defined as the deviation from the 20-year mean (1994-2013) to the 
average condition in 2014. The data of adaptive behaviors and characteristics of farm households 
are from the year 2015. Since this research considers for the spatial relationships, the data is 
constructed into township level. The number of townships in Taiwan is 368, however, after 
deleting townships with no data (we drop the vegetable farm households that didn’t produce any 
crops in 2015 or just produced for their own use from the data), the township-level data used for 
                                                       
2 Taiwan Climate Change Projection Information and Adaptation Knowledge Platform(TCCIP), Available from: 
https://tccip.ncdr.nat.gov.tw/. 

https://tccip.ncdr.nat.gov.tw/


analyses has 357 observations. 

This research focus on three kinds of adaptive behaviors- labor allocation, protective 
facilities, and conservation agriculture practice. Labor allocation is often employed as a strategy 
to spread the risk in household income, aiming to diversify the sources of income (Gutu et al, 
2012; Branco & Féres, 2021; Huang et al., 2020). In this research, the proportion of non-
agricultural labor within the family is considered as an indicator of labor allocation behavior in 
farm households. The second adaptive behavior involves the ratio of greenhouses on their 
farmland. This can be viewed as a protective facility that controls the environment in which 
plants grow. A strategy with similar concept was also mentioned by Gutu et al. (2012), where 
farms will plant trees beside or around the fields. The third adaptive behavior is the adoption of 
organic farming. In this research, the organic farming defined as the farm did not use any 
chemical fertilizer or pesticide on their fields (FAO, 2022; Chang et al., 2023). Organic farming is 
one conservation agriculture practice since organic farming help improve the healthy status of the 
soil system, and it belongs to one of resilient agricultural practice to improve the capacity to cope 
with climate change from improved carbon storage. Organic farming is a conservation agriculture 
practice since it helps improve the health status of the soil system (Tuck et al., 2014). It belongs 
to a resilient agricultural practice aimed at enhancing the capacity to cope with climate change 
through carbon storage (Luh et al., 2023). Although there are not only these three types of 
adaptation strategies, using the data provided by Agriculture Census, this research selects these 
three adaptation behaviors from the perspective of farms' management, hardware, and agricultural 
practices, corresponding to the three categories for farmers’ adaptive strategies in Smit and 
Skinner (2002), including financial management, technical improvement and farming practice. In 
Table 1, the definition of variables and the descriptive statistics are presented.  

Table 1 Definition and descriptive statistics of variables 
Variable Definition Mean S.D. 

Adaptive behaviors 

Nonagri_share The share of family members taking non-agricultural work as their main job (%) 0.399 0.10 

Greenhouse_ratio The share of greenhouse constructed on their farmland (%) 0.006 0.03 

Organic_adoption Adoption of organic farming (0/1) 0.292 0.25 

Weather variables 

RainShock Average daily rainfall in 2014 minus long-run average in 1994-2013 (mm) -1.067 0.82 

RainSD Standard deviation of average daily rainfall in years from 1995-2014 (mm) 1.546 0.45 

LR_Rain Long-run average daily rainfall in 1995-2014 (mm) 5.081 1.66 

Rain Average daily rainfall in 2015 (mm) 4.475 1.55 

TempShock Average daily temperature in 2014 minus long-run average in 1994-2013 (˚C) 0.035 0.23 

TempSD Standard deviation of average daily temperature in years from 1995-2014 (˚C) 0.353 0.07 

LR_temp Long-run average daily temperature in 1995-2014 (˚C) 22.5 2.12 

Temp Average daily temperature in 2015 (˚C) 23.014 2.16 



Operator and farm's characteristics 

Male Gender of the principal operator (0/1) 0.778 0.11 

Age_young Age of principal operator: under 45 (0/1) 0.060 0.05 

Age_strong Age of principal operator: 45-64 (0/1) 0.506 0.11 

Age_old Age of principal operator: 65 up (0/1) 0.434 0.12 

Elementary Education level of the operator: elementary school and below (0/1) 0.452 0.15 

Junior Education level of the operator: junior high school (0/1) 0.229 0.09 

Senior Education level of the operator: senior high school (0/1) 0.228 0.10 

College Education level of the operator: college and above (0/1) 0.090 0.10 

Days29 Farming days in 2015: under 29 days (0/1) 0.104 0.10 

Days59 Farming days in 2015: 30-59 days (0/1) 0.218 0.16 

Days89 Farming days in 2015: 60-89 days (0/1) 0.231 0.10 

Days149 Farming days in 2015: 90-149 days (0/1) 0.193 0.11 

Days179 Farming days in 2015: 150-179 days (0/1) 0.123 0.10 

Days249 Farming days in 2015: 180-249 days (0/1) 0.076 0.08 

Days365 Farming days in 2015: above 250 days (0/1) 0.056 0.08 

Land Farmland of the farm (are; 0.01ha) 80.150 62.51 

Worker Total hired labor in 2015(calculated by the number of workers hired per month) 3.507 5.06 

HH_population Number of population size in the family 3.562 0.66 

HH_elementary Share of members with elementary school education and below (%) 0.324 0.10 

HH_junior Share of members with junior high school education (%) 0.178 0.06 

HH_senior Share of members with senior high school education (%) 0.277 0.07 

HH_college Share of members with college education and below (%) 0.221 0.10 

Source: This research 
Note: The observation of the data is 357. 

In Figure 2, the graphs present the long-run condition of past rainfall and temperature. 
During the period from 1993 to 2014, Taiwan experienced higher long-run daily average rainfall 
in the northern and mountainous regions, while temperatures were higher in the flatlands of the 
southern region, likely due to their proximity to the equator. In this study, our "weather shock" 
variable represents the different climatic conditions that farmers faced in 2014 compared to the 
past. Figure 3 shows the maps of two weather shocks. From the aspect of rainfall, we found that 
the weather shock in 2014 primarily manifested as negative, indicating reduced rainfall in most 
areas during the year. In terms of temperature, it is noteworthy that not all regions experienced 
warming shocks. In fact, over one-third of the areas encountered temperatures in 2014 lower than 
the long-run historical average. 

  



(a) Rainfall (b) Temperature 

  
Figure 2 Maps of long-run weather condition from 1993 to 2014 
Source: This study. 
 

(a) Rainfall shocks (b) Temperature shock 

  
Figure 3 Maps of two weather shocks in 2014 
Source: This study. 
 
4. Results and Discussions 

4.1 The spatial patterns of behaviors 
Global and local indicator of spatial autocorrelation (GISA and LISA) are often used in 

spatial analysis, presenting the spatial relationships from a global and local aspect. GISA present 
a spatial correlation for all units while LISA present for each unit separately (Anselin, 1995). For 
the analysis of GISA and LISA, GeoDa software was used to draw the cluster maps and 
calculated the index which called global Moran’s I. Moran's I values range between -1 and 1. A 
positive value indicates positive spatial autocorrelation, suggesting that neighboring regions 
exhibit similar characteristics. Conversely, a negative value indicates negative spatial 
autocorrelation, implying dissimilarity among adjacent regions. Values close to 0 suggest the 
absence of spatial autocorrelation, indicating that neighboring regions do not show systematic 



similarities or differences (Anselin, 1995; Anselin, 2003). From LISA analysis, the cluster maps 
are shown in Figure 4. Following Anselin (1995), the four types of spatial autocorrelation— high-
high, high-low, low-high, and low-low are labeled in maps. Each of the spatial patterns implies 
that when the chosen unit is the former, then its neighbors tend to be the latter. The weight used in 
the analysis is inverse distance matrix based on the Euclidian distance between any two locations. 
The cluster maps for both non-agricultural share and organic adoption in Figure 4(a) and (c) show 
the agglomeration appears in northern and eastern Taiwan, while the positive correlation is more 
obvious in organic adoption. However, the spatial autocorrelation is weak in greenhouse ratio in 
Figure (b). 

   
(a) Non-agricultural share 

Moran’s I= 0.022*** 
(b) Greenhouse ratio 
Moran’s I= -0.005 

  
(c) Organic adoption 
Moran’s I= 0.142*** 

Figure 4 Cluster maps for three adaptive behaviors 
Source: This study. 
Note: Significance levels of 1%, 5% and 10% are denoted by ***, ** and *. 

In Figure 4, the presenting global Moran's I statistics for the three variables—non-



agricultural share, greenhouse ratio, and organic adoption rate—are 0.022, -0.005, and 0.142 
respectively. After conducting 999 random simulations, the corresponding p-values are calculated 
for the null hypothesis of no spatial autocorrelation between townships. For the non-agricultural 
share, Moran's I of 0.022 suggests a positive spatial autocorrelation, indicating that neighboring 
regions exhibit similar trends in non-agricultural population proportion. This spatial pattern is 
statistically significant with a p-value of 0.003, suggesting that the observed correlation is 
unlikely to be a result of random chance. Regarding the greenhouse ratio, its Moran's I of -0.005 
indicates a weak negative spatial autocorrelation. This implies that adjacent towns may exhibit 
some contrasting trends in proportion of greenhouse on their farmland. However, this spatial 
autocorrelation is not statistically significant with a p-value of 0.219, suggesting that this pattern 
may be attributed to random factors. Lastly, for organic adoption, the Moran's I of 0.142 suggests 
a stronger positive spatial autocorrelation in the organic adoption rate. This indicates that 
neighboring regions tend to have similar trends in organic adoption rates. The spatial 
autocorrelation is statistically significant with a p-value of 0.001, supporting the hypothesis of 
spatial dependence in organic adoption rates. While these spatial analyses didn’t consider for 
other factors like characteristics of farm households, it still offers a preliminary indication that 
there might be spatial autocorrelation in these adaptive behaviors. 
 
4.2 Effects of weather shocks 

This research aims to examine for the effects of weather shocks while considering 
inconsistent effects, the experience of weather conditions by spatial seemingly unrelated 
regressions method. According to equation (4), the effects of weather shocks in Table 2 are 
calculated by adding the estimated coefficient of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (if it’s statistic significantly, and 0 
otherwise) and average experience interaction effect. Due to the interaction effect of weather 
experience is presented by the coefficients for the interaction terms of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
(or 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), the average experience interaction effect is obtained by 
multiplying it with the sample mean of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (or 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). The interaction effects of 
weather experience are displayed in Table 3. By adding the dummy of positive shocks, we can 
discern the difference between negative and positive and calculate their respective effects.  

Table 2 Effects of weather shocks 
  Nonagri_share   Greenhouse_ratio   Organic_adoption   

(a) Rainfall shocks only 
Rainfall shock (-) -0.034  0  -0.079  

Rainfall shock (+) 0.003  0  0.022  

Rho 0.0552  0.959 *** 0.8732 *** 
Lambda 0.6892 ** -6.012 *** 0.8521 *** 

(b) Temperature shocks only 
Temperature shock (-) 0  0.118  0  

Temperature shock (+) 0  0.118  0  



Rho 0.0862  0.9647 *** 0.8561 *** 
Lambda 0.6689 ** -5.8499 *** 0.8706 *** 

(c) Rainfall and temperature shocks 
Rainfall shock (-) 0  0  0  

Rainfall shock (+) 0.029  0  0.114  

Temperature shock (-) 0  0.109  0  

Temperature shock (+) 0  0.109  0  

Rho 0.1589  0.958 *** 0.8759 *** 
Lambda 0.6025 *  -6.2035 *** 0.8505 *** 

Source: This study. 
Note: Significance levels of 1%, 5% and 10% are denoted by ***, ** and * besides spatial 
statistics. 

Table 3 Estimation of interaction with weather experience 
  Nonagri_share Greenhouse_ratio Organic_adoption 

(a) Rainfall shocks only 
Rainfall shock (-) 0 0 -0.051 
Rainfall shock (+) -0.265 0 -0.607 

(b) Temperature shocks only 
Temperature shock (-) 0 0 0 
Temperature shock (+) 0 0 0 

(c) Rainfall and temperature shocks 
Rainfall shock (-) 0 0 0 
Rainfall shock (+) -0.262 0 -0.560 
Temperature shock (-) 0 0 0 
Temperature shock (+) 0 0 0 

Source: This study. 

We provide the results of three model setting, consider for only rainfall shock and normal 
temperature condition, only temperature shocks and normal rainfall condition, and both rainfall 
and temperature shocks. Our findings reveal that the impacts of positive and negative weather 
shocks are not consistent. In the model (a) in Table 2, non-agricultural share and the organic 
adoption rate increase with deeper shocks in both negative and positive rainfall shocks. When 
only consider for temperature shocks in model (b), higher temperature only leads to an increase in 
greenhouse ratios and the signal of shocks didn’t lead to inconsistent effects. After controlling 
both rainfall and temperature in model (c), rainy shocks increase the ratio of households engaged 
in non-agricultural work and the adoption rate of organic practices, whereas drier shocks have no 
effects. The effects of temperature are smaller than model (b), but they still show consistent 
between negative and positive shocks. Additionally, the statistics of spatial dependence are 
represented by the coefficients of rho and lambda, which signify the spatial lag and spatial error, 



respectively. The spatial error appears in all the equations of three adaptive behaviors while the 
spatial lag is shown in greenhouse ratio and organic adoption. 

Moreover, we observed that variations in past weather conditions moderate the effects of 
weather shocks in rainfall from the different signal of effect and interaction term, as indicated in 
Table 3. The result, similar to Chuang (2019), indicates that it might be due to the farm in those 
risky areas having implemented adaptive strategies before. Though the interaction effect of 
negative rainfall shock for organic adoption in model (a) is negative, which is the same as the 
average effect of shock. It’s much smaller than positive ones, and it becomes insignificant when 
considering both rainfall and temperature shocks in model (c). Additionally, as this study 
primarily focuses on the effects of climate impacts, the estimation results of other variables in the 
model are presented in Appendix A to streamline the discussion. 
 
4.3 Heterogeneous effects between groups 

This research examines for whether the effect vary from the farm households with different 
characteristics. We follow with the formal definition in the Agency of Agriculture in Taiwan and 
compare the results between three groups. The first type of farm households is the core farm 
households, which constitute the primary farming productivity in the country. The core farm 
households must have the income from agricultural sales not less than 200,000 NTD 
(approximately 6,500 USD) and have at least one agricultural worker under the age of 65 in their 
family. Second type, elderly farm households, are defined as households in which all members 
involved in farming activities are 65 years of age or older. The last category pertains to mini farm 
households, characterized by an income ranging from 20,000 to 200,000 in 2015, despite having 
at least one agricultural worker under the age of 65 in their family. The vegetable farmers in these 
three categories, according to agricultural census data, comprise 30,064 households, 31,399 
households, and 15,234 households, respectively. 

In Table 4, descriptive statistics for three adaptive behaviors are provided for each group. 
The highest proportion of non-agricultural workers in the family is observed in mini farm 
households, while the lowest is found in core farm households. T-tests for mean differences were 
conducted between each pair of groups for the three adaptive behaviors. Statistically significant 
differences in means were observed at a 10% significance level for most comparisons, except for 
the greenhouse ratio and organic adoption between elderly and mini farm households. Hence, it is 
evident that the adaptive behaviors should vary among different groups. 

Table 4 Descriptive statistics for three types of farm households 
  Core   Elderly   Mini 

Variable Mean S.D.   Mean S.D.   Mean S.D. 

Adaptive behaviors 
Nonagri_share 0.278 0.10  0.292 0.10  0.341 0.11 
Greenhouse_ratio 0.016 0.05  0.002 0.01  0.003 0.01 



Organic_adoption 0.239 0.26  0.278 0.25  0.279 0.26 

Source: This study. 

The spatial autoregressive with spatial error SUR model are used for the analyses of three 
subgroups. Table 5 shows the average effects of weather shocks under controlling both rainfall 
and temperature shocks. The effects are calculated using the same method as employed for all the 
vegetable farmers mentioned earlier. Table 6 displays the estimation of the experience interaction 
effects. We present the results for core farm households under type (a) in Table 5, where rainy 
shocks lead to an increase in the non-agricultural share, while dryer and temperature shocks show 
no effect. Although there is no inconsistency in the positive or negative direction of the effects in 
the greenhouse ratio, it is observed that both rainfall shocks and temperature shocks have an 
impact on this behavior. Notably, the organic adoption is affected largely by hotter shocks, which 
is different from the results in previous section. For the type (b) in Table 5, the behaviors of 
elderly farm households are affected by weather shocks only in the non-agricultural share and 
greenhouse ratio. The organic adoption doesn’t vary by weather shocks. The findings reveal a 
larger impact of rainy shocks compared to core farm households, indicating that elderly farm 
households allocate a higher proportion of their labor force to non-agricultural jobs when 
confronted with rainy shocks, in contrast to core farm households. But we can also find the effect 
on greenhouse ratio is much smaller than core ones. Finally, the behaviors by mini farm 
households, as the type (c) in Table 5, are less likely to be affected by weather shocks than other 
groups, as indicated by the insignificant effects shown in the table. The results demonstrate a 
different impact on labor allocation behavior, which hotter shocks lead to a reduction in the 
proportion of non-agricultural members. This divergence may be attributed to the fact that mini 
farm households, when confronted with weather shocks, have a relatively less agricultural 
workers within their households. Consequently, they need to increase agricultural manpower to 
cope with the shocks. The observed insignificant effect on the greenhouse ratio may suggest a 
diminished capacity to adapt, possibly due to technical or financial constraints. Additionally, 
organic adoption significantly increases with rainy shocks. 
 
Table 5 Effects of weather shocks for three subgroups 
  Nonagri_share   Greenhouse_ratio   Organic_adoption   

(a) Core             
Rainfall shock (-) 0  -0.005  0  

Rainfall shock (+) 0.014  -0.005  0  

Temperature shock (-) 0  0.075  0  

Temperature shock (+) 0  0.122  0.697  

Rho 0.350  0.845 *** 0.903 *** 
Lambda -3.440 *** -6.651 *** -2.580 ** 

(b) Elderly       

Rainfall shock (-) 0  0  0  



Rainfall shock (+) 0.029  0  0  

Temperature shock (-) 0  0  0  

Temperature shock (+) 0.062  0.014  0  

Rho -0.480 *** -0.961  0.825 *** 
Lambda -5.814 *** 0.052  0.869 *** 

(c) Mini       

Rainfall shock (-) 0  0  0  

Rainfall shock (+) 0  0  1.044  

Temperature shock (-) 0  0  0  

Temperature shock (+) -0.559  0  0  

Rho 0.639 *** -0.457  0.757 *** 
Lambda -0.300   -2.248 * 0.678 * 

Source: This study. 
Note: Significance levels of 1%, 5% and 10% are denoted by ***, ** and * besides spatial 
statistics. 

The spatial statistics in the models are also displayed in Table 5, below the estimated shock 
effect. Spatial dependence is more or less evident in the equations of each model, except for the 
greenhouse ratio equation in the case of elderly farmers, where neither the outcome variable nor 
the error term exhibits significant spatial dependence. This also supports the appropriateness of 
incorporating spatial econometric considerations in SUR. In Table 6, we present the estimation of 
experience interaction effects for these three types of farm households. Most of them show the 
moderation to the effect of weather shocks, except for the positive temperature shocks on non-
agricultural share in elderly and mini farm households, and greenhouse ratio in core farm 
households. These interaction effects further enhance the impact of shocks on the behavior. 
Therefore, it can be inferred that in regions with higher temperature variations, the mitigating 
effects may not necessarily manifest. 

Table 6 Estimation of interaction with weather experience for three subgroups 
  Nonagri_share Greenhouse_ratio Organic_adoption 

(a) Core       
Rainfall shock (-) 0 0.009 0 
Rainfall shock (+) -0.291 0.009 0 
Temperature shock (-) 0 -0.470 0 
Temperature shock (+) 0 0.956 -5.669 

(b) Elderly    

Rainfall shock (-) 0 0 0 
Rainfall shock (+) -0.179 0 0 
Temperature shock (-) 0 0 0 
Temperature shock (+) 1.100 -0.302 0 



(c) Mini    

Rainfall shock (-) 0 0 0 
Rainfall shock (+) 0 0 0 
Temperature shock (-) 0 0 0 
Temperature shock (+) -1.585 0 0 

Source: This study. 

 
5. Conclusion 

This research mainly provides the empirical evidence for the effect of weather shocks no 
matter for rainfall or temperature. This study supports the need for considering spatial 
relationships in farm households’ adaptive behaviors. Results for the effect of weather shocks 
show the vegetable farm households in Taiwan tend to be affected by positive shocks, especially 
in rainfall. This might provide evidence indicating that farm households are more risk-averse in 
response to positive shocks. And the negative shock of rainfall can be compensated by local well-
constructed infrastructure like irrigation facilities. The effect of weather shocks also varies 
between behaviors in our results, such as the labor allocation and conservational farming practice 
are affected by rainy shocks while the ratio of greenhouse increases with hotter weather. The 
finding of the moderation of weather experience suggests that prior experience reduces their 
sensitivity the shocks. Similar to the finding in Chuang (2019), this might due to the farm 
households in the area already implemented some adaptive measures in past year. And the effect 
presents in both positive and negative shocks. The differences appear in the response from 
different types of farm households. From subgroup analyses, it's noteworthy that elderly farm 
households tend to allocate their family labor to non-agricultural sectors when facing shocks. 
This consequence might indicate lower motivation for subsequent agricultural operations among 
this demographic. Additionally, mini farm households may exhibit lower responsiveness to 
climate shocks due to implementation costs or limited capabilities. It shows the mini farm 
households need more support from government to do adaptation. With the full consideration of 
inconsistent effect, weather experience, spatial dependence, and correlation between equations, 
this study can provide a more comprehensive view on how weather shocks affect farm 
households’ behaviors. 
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Appendix A. The estimation of covariates in spatial SUR models 
  Rainfall shocks only   Temperature shocks only   Rainfall and temperature shocks 
  (1)  (2)  (3)    (4)  (5)  (6)   (7)  (8)  (9)  

(Intercept) 0.223   -0.127 *** 0.601 **  0.252   -0.109 *** 0.623 *   0.172   -0.105 *** 0.583 * 
Male 0.025  0.062 *** -0.494 ***  0.050  0.041 *** -0.515 ***  0.033  0.058 *** -0.522 *** 
Age_strong 0.021  0.150 *** 1.051 ***  -0.038  0.136 *** 0.819 ***  0.030  0.136 *** 1.017 *** 
Age_old 0.044  0.092 *** 0.868 ***  -0.006  0.082 *** 0.693 ***  0.049  0.074 *** 0.837 *** 
Junior -0.250 *** -0.112 *** -0.308   -0.278 *** -0.110 *** -0.313   -0.238 *** -0.113 *** -0.316  

Senior -0.304 *** -0.017  -0.134   -0.312 *** -0.015  -0.189   -0.289 *** -0.028  -0.170  

College -0.395 *** 0.026  0.068   -0.377 *** 0.026  0.094   -0.388 *** 0.025  0.049  

Days59 -0.103 ** 0.009  0.179   -0.101 * -0.004  0.210   -0.107 ** 0.005  0.178  

Days89 -0.057  -0.059 *** -0.227 *  -0.048  -0.070 *** -0.239 *  -0.055  -0.056 *** -0.242 * 
Days149 -0.217 *** 0.058 *** 0.153   -0.222 *** 0.060 *** 0.150   -0.213 *** 0.055 *** 0.140  

Days179 -0.333 *** 0.004  -0.127   -0.314 *** -0.011  -0.044   -0.335 *** -0.003  -0.128  

Days249 -0.247 *** -0.042 ** -0.014   -0.244 *** -0.053 *** -0.061   -0.247 *** -0.037 * 0.003  

Days365 -0.353 *** 0.011  0.251 *  -0.351 *** 0.011  0.289 *  -0.356 *** 0.011  0.259 * 
Land 0.000  0.000 ** 0.000 *  0.000  0.000 ** 0.000 *  0.000  0.000 * 0.000 ** 
Worker -0.003 *** 0.000  -0.007 ***  -0.003 *** 0.000  -0.007 ***  -0.003 *** 0.000  -0.007 *** 
HH_population 0.006  -0.007 *** -0.047 **  0.008  -0.006 ** -0.051 **  0.008  -0.006 ** -0.054 *** 
HH_junior 0.338 ** 0.196 *** 0.162   0.368 *** 0.239 *** 0.263   0.317 ** 0.203 *** 0.171  

HH_senior 0.562 *** 0.060 * -0.063   0.572 *** 0.095 *** -0.002   0.542 *** 0.086 ** -0.032  

HH_college 0.650 *** 0.022  0.268   0.650 *** 0.036  0.241   0.649 *** 0.025  0.233  

R2 0.597   0.522   0.593     0.591   0.510   0.586     0.604   0.544   0.599   
Note: 1. Significance levels of 1%, 5% and 10% are denoted by ***, ** and *. 2. Column (1) to (3), (4) to (6) and (7) to (9) represent the three 

adaptive behaviors, non-agricultural share, greenhouse ratio and organic adoption. 
Source: This study. 
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