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Abstract 

Organic farming has been viewed as one of the promising farming practices of sustainable 

agricultural production. Evaluating the economic effects of organic farming is important while 

promoting environmental-friendly policies. Considering the four major components of the cropping 

system and spatial agglomeration effects, this study looks into three kinds of economic performances- 

sales revenue, cost and profit, for rice farm households in Taiwan using large-scale national data 

drawn from the 2015 agriculture census. We apply the analysis of local indicators of spatial 

associations to gain a better understanding of the patterns of organic farming clusters. The spatial 

clusters are then incorporated into the Probit-2SLS instrumental variable model, finding that organic 

farming adoption leads to a significantly positive effect on rice farms’ economic performances in 
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turns of cost reduction and profit increase. This positive treatment effect can be further increased 

through spatial agglomeration. Moreover, the treatment effect of organic farming is found to vary 

with the farm characteristics such as farmland area and the number of hired workers. For practical 

implications, establishing organic agriculture specialized zones or providing economic incentives to 

small farms to expand their scale may be a more effective policy means to promote sustainable agri-

food production. 

Keywords Organic farming, Causal effect, Farm household analysis, Spatial agglomeration, 

Heterogeneous treatment effects 

JEL code Sustainable Development Q01; Micro Analysis of Farm Firms, Farm Households, and 

Farm Input Markets Q12 
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1. Background 

Organic farming has been viewed as one of the promising farming practices that provide the 

building blocks for a sustainable food production system. While the benefits of organic farming 

including environmental conservation and human health are obvious from the society’s perspectives, 

the financial consideration, i.e., whether organic farming can sustain or even result in higher returns, 

plays an important role in farmers’ decision-making for adoption. As stated by Feder (1985), farmers 

would tend to adopt new technology when the innovation is more likely to be profitable. Hence, in 

this study, we focus on evaluating the economic effects, including that of sales revenue, cost, and net 

returns, for the farmers producing the major staple food, rice, in Taiwan.  

Addressing the economic effects of organic farming has been one of the major streams of 

research studying the benefits of organic agriculture. Previous studies examined the effect of organic 

farming on production, cost or profit controlling for factors like labor hiring, price premium, or farm 

management (Uematsu and Mishra, 2012; Offermann and Nieberg, 2000; Luh et al., 2016; Nemes, 

2009; Froehlich et al., 2018). Most of the studies in the past found the negative association between 

organic farming and the output level; but the results concerning costs or profits have been mixed. 

Based on a study of the western states in the U.S., it was found that organic farms in Washington and 

California in general needed more labor and longer on-farm worktime (Finley et al., 2018). However, 

the cases in developing countries indicated that the cost for organic farms is usually lower (Nemes, 

2009). As for profit, Nemes (2009) found that organic farms made more profit in a study targeting 

the United States and European countries while another study by Uematsu and Mishra (2012) showed 

insignificant differences between organic and conventional farms. Uematsu and Mishra (2012) 

indicated that the higher revenues resulting from the adoption of organic farming are offset by the 

higher costs for organic certificated farms due to certification fees, labor costs and expenditure on 

aversion to risks. Similar results were also found in the study of Offermann and Nieberg (2000), in 

which the profitability of European organic farms is not statistically different from that of 

conventional farms. Moreover, some found that organic farming exhibited negative economic effects 

such as the studies of Brazil and Taiwan (Froehlich et al., 2018; Luh, et al., 2016). Specifically, Luh, 

et al. (2016) investigated the economic effects of organic farming using data from 168 rice farmers 

in Fuli, Hualian, a township in the east coast of Taiwan. Based on an in-depth questionnaire survey, 

the results showed that organic farms’ profits were usually lower than that of conventional farms. 

The cropping system is composed of four major components, including climate, genotypes, 

management, and soil (Liu and Basso, 2020). Accordingly, all of the four major components should 

be featured or controlled for in a comprehensive analysis of the performance of farming practices. It 

has been brought to our attention that most previous studies concerning the economic outcomes of 

organic farming did not take into consideration all four key components in their empirical evaluation. 
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Therefore, our first contribution to the literature is to examine the economic effects of organic 

agriculture while controlling for all four major components of the cropping system. By providing 

empirical evidence of the economic effects of organic farming through a comprehensive analysis, this 

study complements the extant body of knowledge by drawing on the agriculture census data which is 

composed of more than 700,000 farm households. To the best of our knowledge, there were few 

studies examining the economic impact of organic farming with large-scale or national census data 

despite the popularity of the economic analyses of organic adoption. One of the few studies is 

Froehlich et al. (2018) which studied more than four million family farms in Brazil with their census 

data, and another is the study by Uematsu and Mishra (2012), which is based on 2698 large farm 

businesses drawn from the U.S. agriculture census data.  

Another goal of this research is to investigate whether the economic effects of organic farming 

are dependent on spatial agglomeration. Organic farming has been found to exhibit some spatial 

patterns due to neighboring effect in the studies from many countries, and spatial analyses often help 

to assess the effect of knowledge/awareness spillover (Beauchesne and Bryant, 1999; Schmidtner et 

al., 2012; Läpple and Cullinan, 2012; Wollni and Andersson, 2014; Läpple and Kelley, 2015; Yang 

et al., 2022). One strand of spatial analyses of organic farming focused on factors affecting the 

formation of organic clusters. For example, Läpple and Cullinan (2012) found that organic clusters 

existed in Ireland, and some factors like external support and information promote clustering. Based 

on a spatial analysis of the certified organic frarms in Taiwan, Lu and Cheng (2019) found that the 

areas with a lower risk of inundation or located on the landslides are more likely to form spatial 

clusters of organic farming. To examine the economic effect of the organic clusters, Vogt et al. (2022) 

investigated the effect at the municipal level and found that identifying the organic hotspot could 

provide policy inferences concerning the township-level economic development and agricultural 

upgrading. In Marasteanu and Jaenicke (2019), it was found that the organic clusters help reduce 

regional poverty, and thus serve as an indicator of the economic impacts of organic farming. The 

agglomeration of organic production and processing was also found to improve the local economy to 

achieve the goal of rural development. Even so, as Cainelli (2008) indicated, the patterns of organic 

clusters are different from agricultural clusters. Agricultural clusters are usually located in rural areas 

where consumers have lower purchasing power and are more price incentive whereas organic 

agriculture is usually clustered in more urbanized regions with more green buyers. Part of the 

economic effect of organic agglomeration found in previous studies therefore may be due to the 

correlation between consumers’ purchasing power and farmers’ sales revenue. Therefore, we aim to 

examine whether the economic effects of organic farming vary with the location of the farm in the 

hotspots in this study. As the two key elements to cropping systems, climatic conditions and soil 

qualities may be spatially correlated to economic outcomes, we construct an analysis framework by 
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controlling for seasonal weather conditions and land productivity in this study to provide more 

accurate estimates of the heterogeneous treatment effect due to geographic locations. 

Methodologically speaking, organic adoption and economic performance are influenced by 

observed farm characteristics and environmental factors, and some unobservable factors such as 

farmers’ attitudes, risk aversion, and other psychological factors. As the psychological factors related 

to farmers’ adoption and economic outcomes of organic farming adoption are unobservable in the 

census data used in this study, there is a potential “selection bias” problem to deal with. To address 

the selection bias problem, we apply Probit-2SLS instrumental variable (IV) method in the binary 

treatment model under homogenous and heterogeneous assumptions. Since the organic adoption 

decision is a binary treatment, the use of the liner instrumental variable method represents some kind 

of misspecification and thus leads to inefficiency (Manning, 2004; Wooldridge, 2010). Moreover, we 

consider the possibility that the treatment effect of organic farming may differ depending on some 

factors like land scale, farming experience, etc. To our knowledge, none of the previous research 

evaluating the economic effect of organic farming considered this kind of heterogeneous treatment 

response in the estimation of treatment effect, despite such heterogeneous effects have been modeled 

and analyzed in other applications. For example, in Sebaggala and Matovu (2015), the farm 

production effects of extension service which vary with farm characteristics were examined for 

Uganda’s farms. Similarly, Pradhan and Ranjan (2016) found the heterogeneous average treatment 

effects of farm programs associated with group characteristics.  

Furthermore, this study provides empirical evidence of the economic outcomes of organic 

farming for the agriculture sector dominated by small-scale farms that are less than 1 hectare such as 

in Taiwan. The Council of Agriculture (COA) in Taiwan set a target to achieve in 2018 that a total of 

15,000 hectares of farmland are devoted to organic farming and environmentally-friendly agriculture. 

Under the governmental efforts in promoting organic agriculture, the area of organic and 

environmental-friendly farmland has been increasing rapidly during the past three decades, and up 

until 2020, the organic-alike area has grown from around 1,250 hectares in 2004 to approximately 

around 18,000 hectares (Taiwan Organic Information Portal, 2019). Despite the observed success in 

organic development, there is a lack of empirical evidence and study assessing the economic effects 

of organic farming based on large-scale census data. The findings in this study render important 

policy implications concerning the design of farm programs aiming at promoting the development of 

organic agriculture in the future. 

The following section will first introduce the data used and the variable definition in details. 

Section 3 describes the framework for our empirical analyses, and Section 4 presents the results and 

major findings. The last section is the conclusion of this paper. 
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2. Data and Sample 

Our farm household data are taken from the 2015 Census of Agriculture, Forestry, Fishery and 

Animal Husbandry (hereafter, the 2015 agriculture census) which contains their socio-economic 

characteristics and an indicator of whether chemical inputs including fertilizers and pesticides were 

used in farmers’ production. Following the definition by Tsai et al. (2021) and Luh et al. (2023), 

organic farm households are identified as those who do not use any of the chemical inputs, both 

synthetic fertilizers and pesticides, in the entire cultivation process of paddy rice. Rice farms are 

chosen in this study because the farm households with a major commodity focus on rice take the 

highest share in Taiwan’s agriculture census, around 36.3% in the 2015 agriculture census. After 

deleting the farm household which does not produce any crops or just produces crops for household 

members’ own consumption, there are in total 213,470 rice farm households in this research. 

Township-level weather data in this study include seasonal average temperature and 

precipitation data constructed from the data drawn from Central Weather Bureau Observation Data 

(Central Weather Bureau, 2015) and the crop suitability index representing soil productivity. Since 

this research focuses on paddy rice which has only two growing seasons, we construct the weather 

data for the two growing seasons. The first growing season is from early March to June, and the 

second growing season is from the end of July to November. Within the growth cycle of rice, heading 

time is important for its quality and quantity, therefore we further divide each season into two periods 

by the time to heading following Yang and Chang (1999). Since the standard deviation between 

months in each growing season is influential to the rice yield (Maggio et al., 2022), seasonal standard 

deviations of temperature and rainfall are also included in our empirical analysis. On a scale from 1 

to 10, soil productivity scores represent whether land soil is suitable for growing crops, the lower 

score indicates the higher land fertility, by evaluating the characteristics of soil like land slope, 

drainage, pH level, etc. (National Land Resources Conservation Society, 2015). Average township 

income is used to control for the consumption ability in the town where the rice farm household is 

located. It is hypothesized that the richer the residents, the more likely to purchase organic products. 

Therefore, farms located in high-income township are hypothesized to earn more through the 

adoption of organic farming. 

Table 1 and Appendix A are, respectively, the descriptive statistics and the variable definitions. 

The average revenue of rice farms is around 211,250 NTD/ha and the average cost accounts for a 

little more than half of the revenue. Rice farm households’ adoption rate of organic farming is on 

average 4%, which suggests that there are 8,259 farm households that cultivate part of their land using 

organic farming practices. According to the descriptive statistics in Table 1, the principal operators 

of the rice farm households are mostly male, elder and attained a lower educational level. There are 

around 80% of the farm operators worked on the farm for less than 3 months, implying that the 
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majority of the rice farms in Taiwan did not take farm income as the main source of their livelihood. 

Also, more than half of the farm operators had more than 20 years of farming experience. The 

socioeconomic characteristics of the rice farm households indicate that on average there are 3 

working-age members in the rice farm households. The average percentages of working-age members’ 

educational level are in order elementary school (34%), senior high school (27%), college and above 

(23%) and junior high school (16%). There is on average less than 1 farm worker in the farm 

households. 

The hotspot is the cluster area of organic farming which is identified from local indices of spatial 

autocorrelation (LISA) analysis (Marasteanu and Jaenicke, 2019) which will be discuss detailed in 

section 4.3. In the present study, the hotspot is a dummy variable that takes the value of 1 if the farm 

is in the high-high cluster area and 0 otherwise. The descriptive statistics of temperature for the two 

growing seasons are as the following: the average temperature of growing season 1 is lower in before-

heading time (Temp_avg11) than after (Temp_avg12); the average temperature of growing season 2 

is higher before-heading time (Temp_avg21) than after (Temp_avg22). The statistics of rainfall 

indicate that the before-heading average (Rainfall_ave11/21) is more than after-heading 

(Rainfall_ave21/22) in both two seasons, whereas the rainfall is more in season 2. The statistics 

reported in Table 1 also indicate that while standard deviations from seasonal means are larger in 

season 1 than in season 2 for temperature, standard variations for precipitation are larger in season 2. 

 

3. Empirical Method 

The problem of endogeneity due to selection bias is potentially present when measuring the 

economic effects of organic farming. This problem arises from the correlation between the decision 

of organic farming adoption and the unobservable characteristics that may also affect farm’s 

economic outcomes. To address the endogeneity issue involved in investigating the economic effects 

of organic farming, we use the two-stage least squares method (2SLS) with binary instrumental 

variable to correct for the problem. The outcome equation is specified as equation (1): 

𝑌𝑖 = 𝛼𝐷𝑖 + 𝛃𝐗𝑖 + 𝜀𝑖 , where 𝐸[𝜀𝑖|𝑋𝑖] = 0, 𝑐𝑜𝑣(𝐷𝑖, 𝜀𝑖) ≠ 0 (1) 

In the above equation, the outcome variable, 𝑌𝑖, is the economic performance of the rice farm 

households including sales revenue, cost, and profit per farmland unit (ha). The vector of farm and 

farmer socioeconomic characteristics and the associated coefficient vector are denoted by 𝐗𝑖 and 𝛃 

respectively. The treatment variable, 𝐷𝑖, adoption of the organic farming takes the value of 1 if some 

of the farmland are cultivated without using any synthetic inputs and 0 otherwise, and 𝛼 is the bias 

estimated coefficient due to the endogeneity in equation (1).  
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Fallowing the 2SLS method proposed by Cerulli (2012; 2014), we use the “ivtreatreg” STATA 

module to estimate the treatment model to eliminate the correlation between treatment variable and 

the error term in the outcome model. The rationale of the 2SLS method in Cerulli (2012; 2014) is that 

in the case of a binary treatment, the traditional instrumental variable approach is not efficient due to 

the fact that the predicted treatment is not limited to (0, 1). To deal with this problem, the first stage 

of the 2SLS method ought to be carried out in two steps (Adams et al., 2009; Cerulli, 2012, 2014). 

The first-stage regression is to estimate the probability of organic adoption via the Probit model. The 

Probit model specified as the following uses the cumulative standard distribution function to ensure 

probabilities lying between 0 and 1. 

Pr⁡(𝐷𝑖 = 1) = Φ(𝛾𝑧𝑖 + 𝛋𝐗𝑖 + 𝜐𝑖) (2) 

A valid instrumental variable needs to be correlated with the endogenous explanatory variable 

but not with the outcome variable (or the error term), that is, the instrument affects the outcome only 

through its influence on the endogenous regressor. The instrumental variable to correct for the 

endogeneity of organic adoption is denoted by 𝑧𝑖, and its estimated coefficient is denoted by⁡𝛾.  

Following previous research using friends and neighbors’ organic adoption status (e.g., Dhakal 

and Escalante) or the proportion of neighboring (either spatial closeness or social proximity) farmers’ 

adoption rate (Birthal et al., 2015, Arslan et al., 2017; Asfaw et al., 2019; Marasteanu and Jaenicke, 

2019), the instrumental variable used in the present study is the township-level average organic 

adoption rate conducted with leave-out-mean management. The neighboring effect was used as a 

valid instrument which affects the individual farm’s behavior through the neighboring effect while 

having no influence on the farm’s economic performance. In Yang et al. (2022) and Marasteanu and 

Jaenicke (2019), for example, the existence of neighboring effect in organic farming had been verified. 

Like the study of Maggio et al. (2022), the proportion of households within 30 kilometers from the 

focal household that applied organic fertilizer and intercropping system was used as an instrumental 

variable to examine the causal effects of organic fertilizer and intercropping system on crop 

production.  

By using the probability predicted from Probit regression, this should be used as the instrument 

for treatment variable, 𝐷𝑖 , in an ordinary least-squares regression, which regress probability and 

covariates on 𝐷(Cerulli, 2012, 2014). The probability is the orthogonal projection of 𝐷, making the 

smallest projection error in the vector space generated by (𝑧, 𝐗). This way can keep the efficiency 

if interested treatment variable is binary (Wooldridge, 2010). The predicted probability for each 

individual 𝑖 is denoted by 𝑝𝑖. 

𝑝𝑖 = Pr(𝐷 = 1| 𝑧𝑖 , 𝐗𝑖) = 𝐸[𝐷|𝑧𝑖, 𝐗𝑖] (3) 
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Let 𝜃, 𝛋′ and 𝜈𝑖
′ be the estimated coefficients and the error term, second step of the first-stage 

regression to predict treatment variable is specified as following: 

𝐷𝑖 = 𝜃𝑝𝑖 + 𝛋′𝐗𝑖 + 𝜈𝑖
′ (4) 

We then specify the second stage estimation as in (5):  

𝑌𝑖 = 𝛼𝐷𝑖̂ + 𝛃𝐗𝑖 + 𝜀𝑖 (5) 

Since the predicted value of 𝐷𝑖 ⁡from first stage estimation, is not correlated with the error term, 

𝜀𝑖, the causal effect is thus identified by the coefficient of 𝐷𝑖̂, which measures the local average 

treatment effects. 

 

4. Results and Discussions 

4.1. Economic effects of adoption 

Our primary goal is to identify the causal effect of organic adoption on economic outcomes, 

including revenue, cost and profit, for rice farms in Taiwan. The results of Probit 2SLS estimation 

are presented in Table 2. In Table 2, we only report selected coefficients to facilitate discussion. The 

full set of coefficient estimates are listed in Appendix B.  

As shown in column (1) of Table 2, the treatment effect of organic farming adoption on the sales 

revenue of paddy rice is not statistically significant. The result is different from the finding of Luh et 

al. (2020) which found negative economic effects of organic farming for 167 rice farmers in Fuli, 

Hualian of Taiwan. The result in the present study suggests that the price premium for organic rice 

balances the reduction of output level, resulting in revenues from organic similar to conventional rice 

farming on average. In column (2), we list the results taking the production cost as the outcome 

variable. The coefficient estimate indicates that the adoption of organic farming lowers the production 

cost by about 44,890 NTD/ha on average, which is significant at a 1% level of significance. The 

reduction in production costs for organic farming is likely to be due to cutting the use of chemical 

fertilizers and pesticides. Even though the price of organic fertilizers in Taiwan is much higher 

compared with that of chemical ones, the result implies that the adoption of organic rice farming 

likely leads to a lower tendency for farmers to use fewer organic fertilizers. According to past 

observation (Hsiao, 2008), the majority of farms in Taiwan are family farms which tend to rely on 

labor supply from the family members, rather than hired workers. The economic cost of family labor 

input is not explicitly accounted for when reporting the production cost in the agriculture census. 

Therefore, the result reported in column (2) reveals the increase in labor cost associated with organic 

farming is modest due to the family farm structure of Taiwan’s agricultural sector. In column (3) we 
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report the estimates of the determinants to rice farmers’ profitability measured in net revenue. The 

result indicates that the adoption of organic farming leads to a significant positive outcome in terms 

of profitability differential by around 50,780 NTD/ha, which suggests that the economic incentives 

may be the major motivating factor driving the adoption of organic farming. 

Farm management is another major component in the crop production system. Labor (counted 

in accumulated times monthly) and the number of family members doing farm work, are found to 

have a significant positive effect on sales revenue, cost and profit. In this study, township average 

income per capita (Income_town) is used to capture the size of potential consumers for organic food, 

which however has a moderate negative effect in all three outcome models. This result implies the 

consumption ability in the township does not promote local sales or profit of rice farms. This finding 

might be due to the transportation system and other factors in the distribution of agricultural products 

in Taiwan. As for the climatic factors, we control for seasonal average temperature and rainfall and 

their variations (standard deviations) within each growing season. We find that the higher temperature 

in the hot season (summer, June to September) increases the farm sales revenue and profit, but the 

higher temperature in October to November, which is around the fall in Taiwan, leads to a negative 

effect. This may be attributed to the phenomenon of the prolonged hot seasons resulting from climate 

change which makes the temperature higher during the traditional planting time. The effects of 

rainfalls are mostly in the same direction as the temperatures. Specifically, the negative effects in 

March to May and October to November on the economic outcomes might also be associated with 

the damages from excess rainfalls in the rainy season and the higher frequency of typhoons in those 

periods. As for the deviations of climatic factors, it is found that the corresponding coefficient 

estimates are negative in the second growing season, indicating the degree of temperature variations 

is harmful to crop production. As for the results of soil productivity, we found that worse fertility 

contributes to better economic performances. The results might indicate that instead of relying on the 

original soil fertility, farmers tend to increase the productivity of the land from other resources, 

especially on poor land. 

To validate the use of the instrumental variable in this study, we perform the endogeneity Wu-

Hausman test in Table 3. The statistics of Wu-Hausman test in the profit regression equation are 

significantly different from zero, suggesting that the IV approach should be used in the estimation of 

all three models. Also, models pass the weak instrumental variable test (F statistics are larger than 

10). The test results confirm the validity of using the township average adoption rate of organic 

farming as an instrument in our empirical analysis.  

 

4.2. Hotspot of organic adoption 
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In this section, we discuss the spatial effects focusing on the clusters identified through the local 

indicators of spatial associations (LISA) proposed by Anselin (1995). LISA is also named as local 

Moran’s I, which is calculated as the following: 

𝐼𝑖 =
𝑦𝑖 − 𝑦̅

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

∑𝑤𝑖𝑗(𝑦𝑖 − 𝑦̅)(𝑦𝑗 − 𝑦̅)

𝑛

𝑗=1

, 𝑖 ≠ 𝑗 (6) 

In the above equation, 𝑦𝑖 stands for the township-level adoption rate, and 𝑤𝑖𝑗 is the element 

in the 𝑖th row and 𝑗th column of the spatial weight matrix. We use the towns as the basic units of 

our spatial analysis, i.e., the polygons, and the neighborhood is defined by the common boundaries 

of towns. Generally speaking, there are four types of spatial autocorrelation: high-high, high-low, 

low-high, and low-low (Anselin, 1995). Each of the spatial patterns implies that when the chosen 

polygon is the former, then its neighbors tend to be the latter. The clustering or agglomeration of 

organic adoption is portrayed by the “high-high” relationships, which is also termed a hotspot in 

spatial analysis. The fourth type of spatial autocorrelation, the “low-low” polygons, indicate the 

gathering of lower organic adoption, which is termed coldspot. In Figure 1 we portrayed the four 

patterns of spatial autocorrelation of organic adoption by testing the statistical significance after 

simulating the random permutation 999 times. The gray areas in Figure 1 are undefined in the spatial 

autocorrelation analysis due to the absence of rice farms in the town or the town being isolated without 

any neighboring towns. 

In the left panel of Figure 1, the spatial patterns indicate that the hotspots are located in northern 

and eastern Taiwan. The two regions are not the major rice production areas in Taiwan, suggesting 

that organic rice is less prevalent in the major rice production regions. Similar findings can be found 

for the low-low areas. We also present the global Moran’s I in Figure 1(b). The global Moran’s I can 

be used as a test for the existence of an overall spatial autocorrelation. The global Moran’s I statistic 

is 0.366 which is significant at a 1% significance level. The positive slope of the scatterplots shows 

the positive correlation between polygons and its neighbors, indicating that the neighborhood effect 

at the township level is positive from an overall perspective. The agglomeration of organic adoption 

is expected to moderate the economic effects of organic farming. There, as below we examine if 

hotspots or coldspots make a difference in the outcomes of organic farming. 

In Table 4, we find the treatment effects of organic adoption to be dependent on whether the 

farm is in the hotspot, non-hotspot (includes coldspot and neither), or coldspot. Although the 

coefficient estimates of organic adoption in sales revenue are negative for all three groups including 

hotspot, coldspot and non-hotspot, the size of the effect on reduced sales revenue becomes much 

smaller in the hotspot than the non-hotspot and coldspot groups in the first row. The reduction in sales 
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revenue varies from approximately 24,260 NTD/ha in hotspots to 65,040 NTD/ha in the non-hotspot 

townships, and further to 1,485,640 NTD/ha in the coldspots. This result suggests that farms in 

hotspots might receive a higher price premium or have higher productivity due to the agglomeration.  

In the second row, the negative treatment effect of organic farming on the production costs is 

smaller in the hotspot group than in the coldspot group. Comparing column (1) and (3), the organic 

farms in the hotspot might spend more on organic input or invest on farming facilities to help 

increasing their yield. However, in terms of the most important outcome for farmers—profitability—

the coefficients of organic adoption are, respectively, negative in coldspot, not significantly different 

from zero in non-hotspot, and positive in hotspot areas. We also found the positive treatment effect 

in the hotspot group is larger than the average treatment effects of the entire rice population listed in 

Table 2. These results indicate that organic agglomeration exerts a positive impact on organic farms’ 

economic performance.  

Tests for the nine models (three performance indicators for three groups of farms) are also 

performed and listed in Table 5. The IV regression endogeneity Wu-Hausman tests for sales revenue 

in the hotspot group is insignificant, suggesting that the issue of endogeneity is not a critical concern. 

Therefore, we use the OLS (ordinary least squares) model in estimating the revenue model in column 

(2) of Table 4 (model types are presented at the bottom of the tables). As shown in Table 5, all models 

pass the weak instrumental variable test with F statistics greater than 10. 

 

4.3 Heterogeneous effects  

Considering that the treatment effect may vary with the farm and farmers’ socioeconomic 

characteristics, we conduct further analyses of heterogeneous (or idiosyncratic) average treatment 

effects following the procedures outlined in Cerulli (2014). When the heterogeneous response is 

present, the treatment effect is correlated with the deviation of the farm from the whole sample. In 

this study, we take all explanatory variables into consideration, and portray the heterogeneous effects 

based on the distribution of the average treatment effects. 

Figure 2 presents the distribution of the heterogeneous average treatment effects by three 

outcome indicators. It is found that the average treatment effect differs substantially with the 

characteristics of individual farms. In Figure 3, we present the distribution of treatment effects by 

some farm characteristics in x-axis, including land size, number of hired labors, and the 

characteristics of the farm operator. These factors have been found to be important factors affecting 

a farm’s economic performance and the adoption of organic farming in the literature. The first row 

in Figure 3 shows the average treatment effect on profit per hectare increases with the farmland areas 

or the number of hired labor. The results suggest that more land area and hired labors will result in 

more sizable economic effects of organic farming. We also present the distribution of average 
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treatment effects by farm operator’s characteristics, including age, educational level, on-farm work 

days and farm experiences. As shown in Figure 3, the average treatment effects exhibit modest 

variations with farm operators’ characteristics either by the scatter plots or the fitted lines. However, 

in general, the treatment effect is found to be more sizable when the principal operators are younger, 

more experienced, have a higher educational level, or devote more on-farm work days. 

 

5. Conclusion 

This paper examined the causal effect of organic farming on rice farms’ economic performance. 

The results in this study indicate that organic farms outperform their conventional counterparts either 

in terms of production cost or profitability. The reduction in the production cost is likely to be due to 

cutting the use of chemical fertilizers and pesticides, while the higher demand for labor is 

complemented by family labor. It is worth mentioning that the adoption of organic farming has larger 

positive impact on organic farms’ economic performances in the hotspot areas. This result may be 

considered some evidence supporting the economic benefits of the cluster of organic farming. The 

findings in this study have important policy implications for the promotion of organic farming. First, 

since spatial spillovers of organic farming generate positive externality as the agglomeration theory 

predicts, the establishment of the specialized organic agriculture park/production areas in Taiwan is 

expected to benefit farmers adopting the environmentally-friendly practices and the development of 

rural economy. Furthermore, the heterogeneous treatment response identified in this study indicate 

that the treatment effects of organic farming vary with the farm’s characteristics such as land size and 

the number of hired labors. Both land size and number of hired workers can be used to indicate the 

scale of farms, the findings in this study thus suggest that instead of providing flat-rate subsidies to 

encourage the adoption of organic farming, providing economic incentives to small farms to expand 

their scale may be more effective policy means to promote organic agriculture. 

Due to the limitation of data, this study did not control the use of organic fertilizers. The 

appropriate use of organic fertilizers plays an important role in the organic farming system. However, 

it is also costly due to higher prices. Furthermore, due to its importance in Taiwan’s agriculture, we 

limit our study focus to the rice farms in this research. Since the economic effects of organic farming 

are likely to vary by crop, a promising avenue of future extension of our work is to explore the 

treatment effects for other crops like vegetables, fruits, grains, and so on. 
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(a) Rice farms 

 

(b) Global Moran’s I=0.366 

 

  Organic adoption 

Figure 1 Spatial patterns (left) and Moran scatterplot (right) of organic farming 

 

 

 

Figure 2. Distribution of heterogeneous average treatment effects on revenue, cost, and profit 
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Figure 3. distribution of heterogeneous average treatment effects on farm’s characteristics 
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Table 1 Descriptive Statistics of variables 

Variable Mean Std. Dev. Variable Mean Std. Dev. 

Outcome variables      Labor (person) 0.75 3.42 

Revenue (1000 NTD/ha) 211.25 121.92 
 

Organic hotspots (0/1) 0.01 0.11 

Cost (1000 NTD/ha) 105.72 65.36 
 

Income_town (1000 NTD)  732.27 110.68 

Profit (1000 NTD/ha) 105.53 65.88 
 
Characteristics of household members 

Treatment variable 
   

FH_male (%) 0.56 0.25 

Organic adoption (0/1) 0.04 0.19 
 

FH_age (<45) (person) 1.39 1.36 

Operators & farm’s characteristics 
 

FH_age (45-64) (person) 1.1 0.88 

Male (0/1) 0.81 0.39 
 

FH_age (>64) (person) 0.89 0.81 

Age (<45) 0.05 0.21 
 

FH_elementary (%) 0.34 0.34 

Age (45-64) 0.45 0.5 
 

FH_junior (%) 0.16 0.26 

Age (>64) 0.5 0.5 
 

FH_senior (%)  0.27 0.3 

Elementary (0/1) 0.48 0.5 
 

FH_college (%) 0.23 0.28 

Junior (0/1) 0.21 0.41 
 

FH_farm_working (person)        0.72 0.81  

Senior (0/1) 0.22 0.42 
 
Climate & Soil variables   

College (0/1) 0.08 0.27 
 

Temp_avg11 23.26 1.34 

Days (<=29 days) 0.27 0.44 
 

Temp_avg12 29.37 0.97 

Days (30-59 days) 0.3 0.46 
 

Temp_avg21 27.93 0.86 

Days (60-89 days) 0.22 0.42 
 

Temp_avg22 24.44 1.14 

Days (90-149 days) 0.12 0.33 
 

Rainfall_avg11 169.52 37.9 

Days (150-179 days) 0.05 0.21 
 

Rainfall_avg12 59.11 39.19 

Days (180-249 days) 0.02 0.15 
 

Rainfall_avg21 265.36 96.41 

Days (>249 days) 0.01 0.12 
 

Rainfall_avg22 57.81 113.63 

Exp (< 5 yrs) 0.1 0.3 
 

Temp_sd1 3.98 0.57 

Exp (5-9 yrs) 0.12 0.33 
 

Rainfall_sd1 182.51 57.35 

Exp (10-19 yrs) 0.19 0.39 
 

Temp_sd2 1.93 0.31 

Exp (>=20 yrs) 0.59 0.49 
 

Rainfall_sd2 193.17 72.09 

Land (ha) 0.71 1.44   Soil_score 8.09 0.95 
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Table 2 Estimation for economic effect of rice farms (selected coefficients) 

  Revenue   Cost   Profit   

Variables (1)   (2)   (3)   

Organic adoption 5.89 (10.99) -44.89*** (5.13) 50.78*** (6.79) 

Farm characteristics 
      

Labor 4.25*** (0.26) 2.69*** (0.15) 1.56*** (0.12) 

FH_farm_working  8.99*** (0.48) 2.87*** (0.25) 6.12*** (0.27) 

Income_town -0.04*** (0.00) -0.01*** (0.00) -0.03*** (0.00) 

Climate and soil 
      

Temp_ave11 19.63*** (1.55) 20.29*** (0.89) -0.66 (0.82) 

Temp_ave12 1.35 (1.70) -11.70*** (0.97) 13.05*** (0.90) 

Temp_ave21 51.52*** (3.41) 28.73*** (1.64) 22.79*** (2.07) 

Temp_ave22 -64.09*** (2.83) -34.48*** (1.31) -29.61*** (1.74) 

Rainfall_ave11 -0.68*** (0.02) -0.32*** (0.01) -0.36*** (0.01) 

Rainfall_ave12 0.26*** (0.01) 0.16*** (0.01) 0.10*** (0.01) 

Rainfall_ave21 0.33*** (0.01) 0.23*** (0.01) 0.10*** (0.01) 

Rainfall_ave22 -0.17*** (0.01) -0.12*** (0.00) -0.05*** (0.00) 

Temp_sd1 12.51*** (2.10) 14.85*** (1.20) -2.34** (1.11) 

Rainfall_sd1 0.68*** (0.01) 0.29*** (0.01) 0.38*** (0.01) 

Temp_sd2 -166.88*** (5.93) -64.17*** (2.75) -102.71*** (3.63) 

Rainfall_sd2 -0.35*** (0.01) -0.19*** (0.01) -0.17*** (0.01) 

Soil_score 22.36*** (0.61) 9.54*** (0.34) 12.81*** (0.33) 

Type IV 
 

IV 
 

IV 
 

Observations 213,470   213,470   213,470   

Note: Robust standard errors are in the parentheses, and significant levels are denoted by *, ** and 

*** at 10%, 5% and 1% respectively. 

 

Table 3 Tests for endogeneity and weak instrumental variable - all rice farm 

  Revenue Cost Profit 

Rice farms (obs=213,470)   

Endogeneity test significant*** significant *** significant *** 

Weak IV test (F-stat > 10) F= 9032.18  F= 9032.18   F= 9032.18 

Note: Stars here *** denotes significant at 1%. 
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Table 4 Estimation for economic effect s between non -hotspot and hotspot groups 

  Hotspot    Non-hotspot   Coldspot   

  (1)   (2)   (3)   

Outcome variable 
      

Revenue -24.26** 
 

-65.04*** 
 

-1,485.64*** 
 

 
(11.80) 

 
(10.63) 

 
(100.06) 

 

Cost -209.78** 
 

-59.57*** 
 

-403.41*** 
 

 
(87.50) 

 
(5.41) 

 
(32.25) 

 

Profit 197.13** 
 

-5.47 
 

-1,082.23*** 
 

 
(99.44) 

 
(5.94) 

 
(71.20) 

 

Type  OLS / IV / IV   IV / IV / IV   IV / IV / IV 

Observations 2,464   211,006   94,955   

Note: Robust standard errors are in the parentheses, and significant levels are denoted by *, ** and 

*** at 10%, 5% and 1% respectively. 

 

Table 5 Tests for endogeneity and weak instrumental variable -subgroups 

  Hotspot        Non-hotspot     Coldspot   

Endogeneity Revenue Cost Profit 
 
Revenue Cost Profit 

 
Revenue Cost Profit 

 
N Y*** Y** 

 
Y* Y*** Y*** Y*** Y*** Y*** 

Weak IV(F>10) F=14.61 
   

F=7303.72 
   

F=558.75 
  

  obs=2,464     obs=211,006     obs=94,955   

Note: Signal N and Y indicates whether the model pass the test (no/yes) and significant levels are 

denoted by *, ** and *** at 10%, 5% and 1% respectively. 
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Appendix A 

Variable Definition 

Dependent variable   

Revenue 

Farm revenue from agricultural sales per unit farmland (excluding the 

processed; 1,000NTD/ha) 

Cost 

Total cost of agricultural production and sales per unit farmland 

(1,000NTD/ha)  

Profit 

Total profit of agricultural production and sales per unit farmland 

(1,000NTD/ha) 

Treatment variable  

Organic adoption Organic rice farming is adopted=1 and 0 otherwise 

Principal operator  

Male Gender of the principal operator 

Age (under 45) Age (less than 45 years old) 

Age (45-65) Age (45-64 years old) 

Age (65 and up) Age (more than 64 years old) 

Elementary Education (elementary school and below) 

Junior Education (junior high school) 

Senior Education (senior high school) 

College Education (college and above) 

Days (< 30 days) On-farm workday (less than 30 days) 

Days (30-59 days) On-farm workday (30-59 days) 

Days (60-89 days) On-farm workday (60-89 days) 

Days (90-149 days) On-farm workday (90-149 days) 

Days (150-179 days) On-farm workday (150-179 days) 

Days (180-249 days) On-farm workday (180-249 days) 

Days (>249 days) On-farm workday (more than 249 days) 

Exp (< 5 yrs) Farming experience less than 5 years 

Exp (5-9 yrs) Farming experience 5-9 years 

Exp (10-19 yrs) Farming experience 10-19 years 

Exp (>=20 yrs) Farming experience more than 20 years 

Household members over 15 years old 

FH_male Share of male members 

FH_age (under 45) Number of members under 45 years old 

FH_age (45-65) Number of members aged 45 to 64  

FH_age (65 and up) Number of members aged 65 and up 

FH_elementary Share of members with elementary school education and below  

FH_junior Share of members with junior high school education 

FH_senior Share of members with senior high school education 

FH_college Share of members with college education and below 

FH_farm_working  Number of members who take farm work as their main job 

Farm characteristics  

Land Farmland used for crop production (hectare) 

Labor  Total hired labor (calculated by number of labors hired per month) 

Income_town The average income (all sources) per capita in the located town 
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Climate and soil  

Temp(Rainfall)_ave11 
The average monthly temperature (rainfall) before heading in growing 

season 1 

Temp(Rainfall)_ave12 
The average monthly temperature (rainfall) after heading in growing 

season 1 

Temp(Rainfall)_ave21 
The average monthly temperature (rainfall) before heading in growing 

season 2 

Temp(Rainfall)_ave22 
The average monthly temperature (rainfall) after heading in growing 

season 2 

Temp(Rainfall)_sd1 
Standard deviations from seasonal temperature (rainfall) means in 

growing season 1 

Temp(Rainfall)_sd2 
Standard deviations from seasonal temperature (rainfall) means in 

growing season 2 

Soil_score The score of soil productivity, scaling from 1 to 10 (decreasing fertility) 
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Appendix B Estimates of operator and household member's characteristics: all rice farms 

  Revenue   Cost   Profit   

Variables (1)   (2)   (3)   

Operator characteristics 
     

Male -0.84 (0.76) -1.18*** (0.40) 0.33 (0.43) 

Age (under 45) 6.60*** (1.30) 4.34*** (0.72) 2.26*** (0.71) 

Age (65 and up) -5.91*** (0.99) -2.10*** (0.53) -3.81*** (0.57) 

Junior -2.83*** (1.04) -0.91 (0.59) -1.92*** (0.56) 

Senior -3.39*** (1.04) -0.32 (0.56) -3.07*** (0.58) 

College -0.94 (1.47) 1.49* (0.79) -2.43*** (0.84) 

Days (30-59 days) 6.67*** (0.59) 7.17*** (0.32) -0.50 (0.34) 

Days (60-89 days) 30.53*** (0.79) 18.95*** (0.42) 11.59*** (0.44) 

Days (90-149 days) 41.40*** (1.05) 27.26*** (0.57) 14.14*** (0.58) 

Days (150-179 days) 40.17*** (1.59) 26.73*** (0.87) 13.44*** (0.88) 

Days (180-249 days) 54.39*** (2.57) 34.01*** (1.32) 20.38*** (1.46) 

Days (>249 days) 36.79*** (2.39) 26.00*** (1.34) 10.80*** (1.37) 

Exp (5-9 yrs) 3.94*** (0.91) 3.61*** (0.49) 0.34 (0.52) 

Exp (10-19 yrs) 4.65*** (0.83) 4.47*** (0.45) 0.17 (0.48) 

Exp (>=20 yrs) 3.32*** (0.83) 4.61*** (0.45) -1.29*** (0.47) 

Household members 
     

FH_male -0.56 (1.13) -0.21 (0.62) -0.35 (0.63) 

FH_age (under 45) -0.31 (0.25) -0.30** (0.13) -0.01 (0.14) 

FH_age (45-65) 0.46 (0.34) 0.51*** (0.18) -0.05 (0.19) 

FH_age (65 and up) 0.43 (0.50) 0.53** (0.26) -0.10 (0.28) 

FH_junior 3.95** (1.66) 1.31 (0.92) 2.65*** (0.91) 

FH_senior 4.58*** (1.51) 1.20 (0.81) 3.39*** (0.85) 

FH_college 1.08 (1.81) 0.39 (0.97) 0.68 (1.02) 

Constant -98.45*** (13.73) -33.95*** (7.07) -64.51*** (8.08) 

Note: Robust standard errors are in the parenthesis, and significant levels are denoted by *, ** and *** at 10%, 5% and 

1% respectively. 

 


