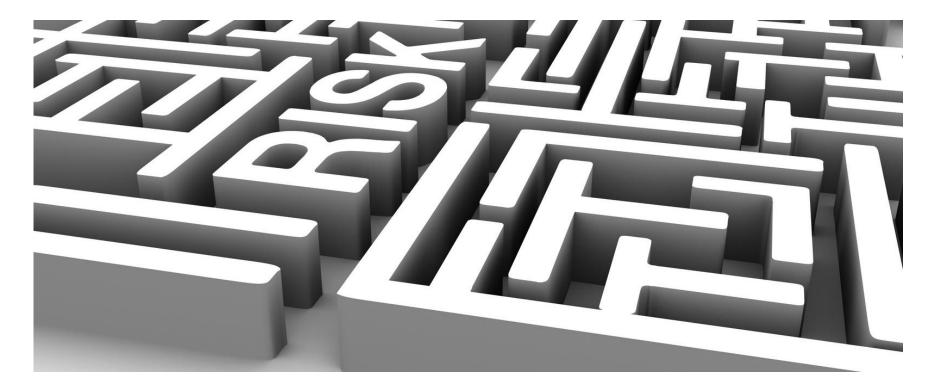
Masterclass Analyzing risk in agriculture

An overview of defining, measuring, and characterizing farm-level risk exposure March 20, 2024; AES Conference, Edinburgh, Scotland Yann de Mey

Motivation

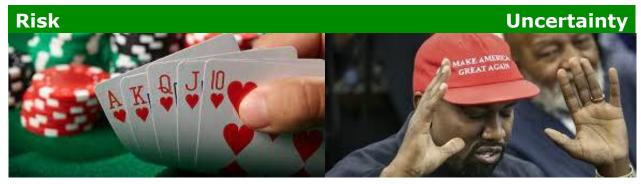
Masterclass Overview


An overview of defining, measuring, and characterizing farm-level risk exposure

- 1. Defining Risk
- 2. Objective vs. Subjective Risk
- 3. Measuring Risk
- 4. Characterizing Farm-Level Risk Exposure

Focus on presenting an overview, intuition (with many references)

1. Defining Risk



"Risk is like love, we all know what it is, but we don't know how to define it"

Joseph Stiglitz

- Two main dimensions:
 - Probability (likelihood/chance/...)
 - <u>Impact</u> (outcomes/return/...)
- Most famous distinction made by Knight (1921) focusing on measurability

- However, this definition narrow and at odds with daily language
- More recently, we use <u>knowledge</u> about both dimensions for further classification



Knight, F. H. (1921). Risk, Uncertainty, and Profit. Boston: Hart, Schaffner & Marx.

Knowledge about Impact Not problematic Problematic Probabilities Some basis RISK AMBIGUITY Contested features Familiar systems Controlled situations Disagreement Knowledge based Insufficient knowledge about UNCERTAINTY IGNORANCE Unexpected conditions *Complex systems* **Showledge Open situations** Surprises Insufficient knowledge Unknowns No basis

1975 to 1977 United States Secretary of Defense Donald Rumsfeld

Knowns

Unknowns

Manning, L., Birchmore, I., & Morris, W. (2020). Swans and elephants: A typology to capture the challenges of food supply chain risk assessment. *Trends in Food Science & Technology*, *106*, 288-297.

Note that Risk should not be <u>defined</u> as expected consequences:

EV = Probability x Impact

- This is a risk <u>metric</u> (see part 3), not risk per se
- In fact, this is a risk metric that is informative in some cases but in most cases not. For example, different P and I combinations lead to same value:

 $1/4 \times 2 = 0.5$ and $3/4 \times 2/3 = 0.5$

According to risk science, risk is defined as a triplet (Kaplan & Garrick, 1981):

< Scenario + Probability + Impact >

Formal Definitions of Risk

The possibility of something bad happening at some time in the future; a situation that could be dangerous or have a bad result

- Hardaker et al. (2015): Uncertainty that matters
- Society for Risk Analysis (2020):
 - A <u>future</u> activity
 - In relation to the consequences and some reference values
 - Related to something that humans value
 - Focus is often on <u>negative</u>, undesirable consequences (always at least one outcome considered negative or undesirable)

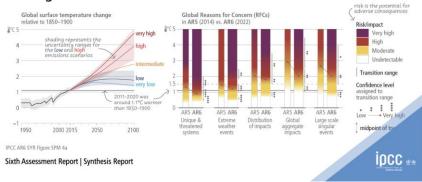
Hardaker, J. B., Lien, G., Anderson, J. R., & Huirne, R. B. (2015). Coping with risk in agriculture: Applied decision analysis. Cabi.

Formal Definitions of Risk

Society for Risk Analysis Glossary

- . Risk is the possibility of an unfortunate occurrence
- 2. Risk is the potential for realization of unwanted, negative consequences of an event
- 3. Risk is exposure to a proposition (e.g., the occurrence of a loss) of which one is uncertain
- 4. Risk is the consequences of the activity and associated uncertainties
- 5. Risk is uncertainty about and severity of the consequences of an activity with respect to something that humans value
- 6. Risk is the occurrences of some specified consequences of the activity and associated uncertainties
- 7. Risk is the deviation from a reference value and associated uncertainties

Society for Risk Analysis Glossary: <u>https://www.sra.org/wp-content/uploads/2020/04/SRA-Glossary-FINAL.pdf</u>


Formal Definitions of Risk

- Even though various definitions exist, they agree/converge on:
 - Covering < Scenario + Probability + Impact >
 - Being distinct from risk measurement (which warrants diverse approaches)
- Our level of confidence is also a highly relevant aspect

Risk

The potential for adverse consequences for human or ecological systems, recognising the diversity of values and objectives associated with such systems. In the context of *climate change, risks* can arise from potential *impacts* of *climate change* as well as human responses to *climate change*. Relevant adverse consequences include those on lives, *livelihoods, health* and *well-being,* economic, social and cultural assets and investments, *infrastructure,* services (including *ecosystem services*), *ecosystems* and species.

Risks are increasing with every increment of warming High risks are now assessed to occur at lower global warming levels

IPCC, 2023: *Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647.

Intermezzo: Can we compare all risks?

Tweet by Kim Kardashian that earned "International Statistic of the Year" 2017

Kim Kardashian West 🥺

Statistics

Number of Americans killed annually by:							
Islamic jihadist immigrants ¹ :	2						
Far right-wing terrorists ¹ :	1						
All Islamic jihadist terrorists (including US citizens) ¹ :	ę						
Armed toddlers ² :	2						
Lightning ³ :	3						
Lawnmowers ⁴ :	69						
Being hit by a bus ⁴ :	264						
Falling out of bed ⁴ :	737						
Being shot by another American ⁵ :	11,737						
10-year average of terrorist attacks "Deadly Attacks Since 9/11," New America,							

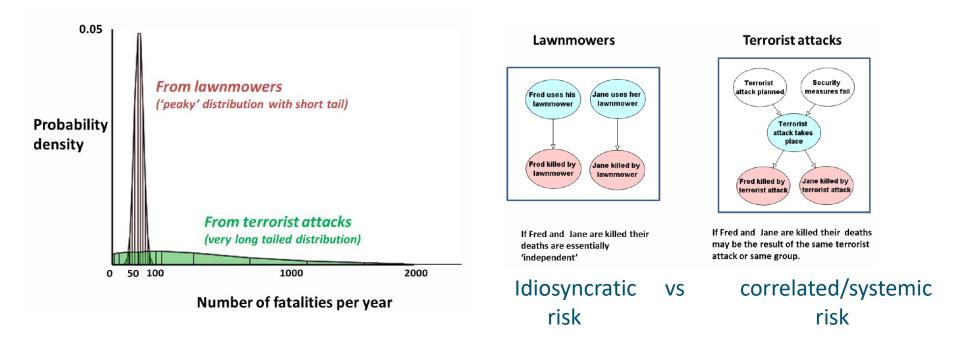
http://securitydata.newamerica.net/extremists/deadly-attacks.htr

www.snopes.com/toddiers-killed-americans-terrorists/

10-year average of deaths by lightning, NOAA, www.nws.noaa.gov/om/hazstats/resources/weather_fatalities.pdf
10-year average, Underlying Cause of Death 2014, CDC, http://wonder.cdc.gov/

¹⁰-year average 2005-2014, CDC, Injury Prevention & Control: Data & Statistics (WISQARS¹¹) www.cdc.gov/injury/wisgars/fatal injury reports.html Tweet in response by disruptive thinker Nassim Taleb

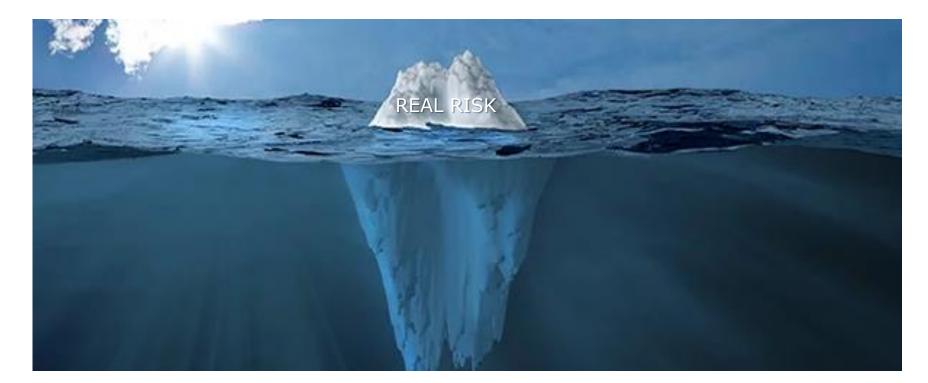
Nassim Nicholas Taleb @nntaleb


1) Look at head statistician from the Royal Society promoting that BS. No, the 2 variables are NOT comparable statistically.

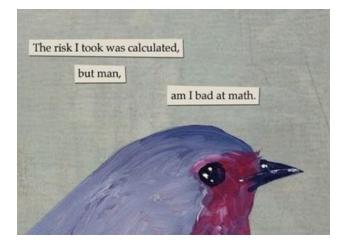
Following

Your lawnmower is not trying to kill you.

Intermezzo: Can we compare all risks?



Various Aspects of Risk Matter


- Systematic? Due to external forces or with repercussions at scale (e.g. earthquakes)
- Systemic? Leading to collapse of an entire system, with an important role for interlinkages (e.g. financial crises)
- Catastrophic? Unanticipated, crippling organizations and often leading to ruin (e.g. terrorist attack)
- Idiosyncratic (impacting a single entity, e.g. landslide) vs covariate (correlated between various entities, e.g. hailstorm)
- Single shock versus repeated stressor (time dimension)
- Upside risk (potential) versus downside risk (focus on negative)

A lot of these concepts overlap or are used interchanged Make sure to characterize your risk of interest well


Objective Risk (real risk)

VS.

Subjective Risk (risk as-feelings) (Loewenstein et al., 2001)

- Risk is always subjective, depends on your definitions
- We often treat risk as being objective, we have to, but be aware this introduces model risk
- Risk is inherently human, probability (theory) its language

WAGENINGEN UNIVERSITY & RESEARCH Loewenstein, George F., Elke U. Weber, Christopher K. Hsee, and Ned Welch. "Risk as feelings." Psychological bulletin 127, no. 2 (2001): 267.

Ex-Post / Understanding vs. Ex-ante / Prediction

van Winsen, F., de Mey, Y., Lauwers, L., Van Passel, S., Vancauteren, M., & Wauters, E. (2016). Determinants of risk behaviour: effects of perceived risks and risk attitude on farmer's adoption of ¹⁸ risk management strategies. *Journal of Risk Research*, *19*(1), 56-78.

Probabilities for decision analysis in agriculture and rural resource economics: The need for a paradigm change

J. Brian Hardaker^a, Gudbrand Lien^{b,c,*}

^a School of Business, Economics and Public Policy, University of New England, Armidale, NSW 2351, Australia ^b Norwegian Agricultural Economics Research Institute, PO Box 8024 Dep., No.-0030 Oslo, Norway ^c Lillehammer University College, PO Box 952, No.-2604 Lillehammer, Norway

ARTICLE INFO

Article history: Received 9 March 2009 Received in revised form 11 January 2010 Accepted 19 January 2010 Available online 18 April 2010

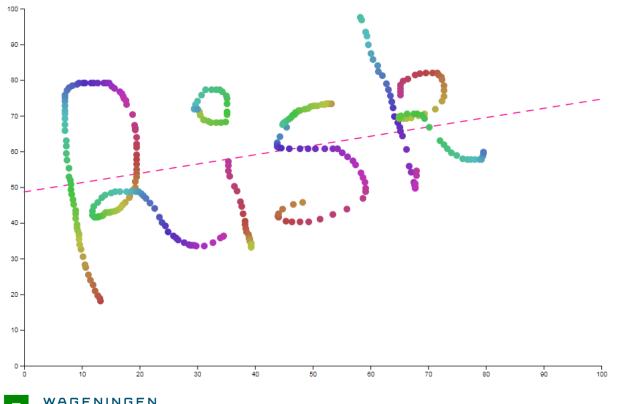
Keywords: Decision analysis Risk and uncertainty Subjective probabilities

ABSTRACT

The notion that we can rationalize risky choice in terms of expected utility appears to be widely if not universally accepted in the agricultural and resource economics profession. While there have been many attempts to assess the risk preferences of farmers, there are few studies of their beliefs about uncertain events encoded as probabilities. We may attribute this neglect to scepticism in the profession about the concept of subjective probability. The general unwillingness to embrace this theory and its associated methods has all too often caused researchers to focus on problems for which frequency data are available, rather than on problems that are more important where data are generally sparse or lacking. In response, we provide a brief reminder of the merits of the subjectivist approach and extract some priorities for future research should there be a change of heart among at least some of the profession.

© 2010 Published by Elsevier Ltd.

Hardaker, J. B., & Lien, G. (2010). Probabilities for decision analysis in agriculture and rural resource economics: The need for a paradigm change. *Agricultural systems*, *103*(6), 345-350.

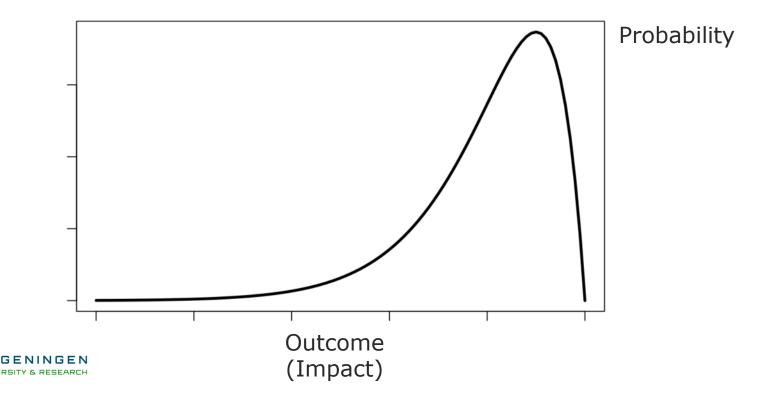

- In essence: both perspectives matter depending on the application
- When modelling or approaching from "rational" or data-driven perspective we treat it as objective
- When used for decision making it always involves some level of subjectivity (see also Cerroni and Rippo, 2023)
- Note that at the core of the leading theories used to model economic decision making, assumptions are made regarding risk (perception) and risk preferences

Cerroni, S. and Rippo ,R. (2023) Subjective Probabilities and Farmers' Decision-Making in Developing Countries, CABI, doi:10.1079/9781800622289.0003, (35–49).

Neoclassical Expected Prospect Value **Economics** Theory Utility u(x)Value v(x) Outcome x EP = pv(x)EU = pu(x)EV = px**Risk Aversion Risk Aversion Risk neutrality Risk Neutrality** Loss Aversion **Risk Loving/Seeking Probability Weighting**

3. Measuring Risk

From Risk Definition to Risk Measures

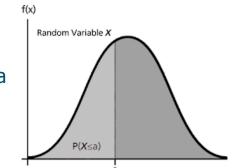

- Hardaker (2000) identifies 3 major views on risk that help classify different measures of risk:
 - I. Uncertainty of outcomes
 - II. Variability of outcomes
 - III. Chance of bad outcomes
- Although seemingly similar, these three views imply quite different ways of measuring risk
- When formally defined, they can be seen to be mutually inconsistent...

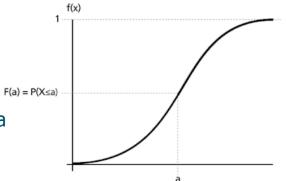
Hardaker, J.B. (2000) Some Issues in Dealing with Risk in Agriculture. Working Paper Series in Agricultural and Resource Economics No. 2000-3.

From Risk Definition to Risk Measures

A starting/reference point is thinking in terms of distributions

I. Uncertainty of Outcomes

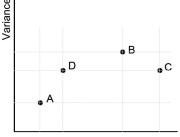

Probability density function (PDF)


Probability that random variable X will take a value equal to a

Can be evaluated/integrated over range:

Cumulative density function (CDF)

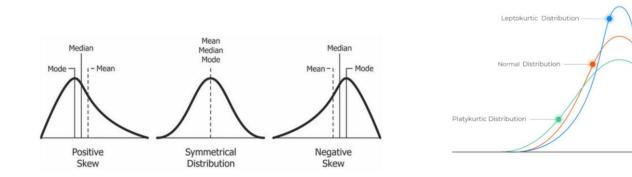
Probability that X will take a value less than or equal to a


II. Variability of Outcomes

Ranges

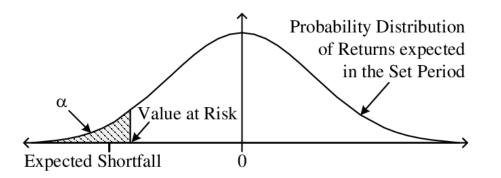
- Range of possible values: [Min Max]
- Percentiles of values: P01, P05 <> P99, P90
- Variability measures
 - Mean, Variance, SD

$$ar{x} = rac{1}{n} \left(\sum_{i=1}^n x_i
ight) \quad ext{Var}(X) = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \;\; \sigma = \sqrt{rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2}$$

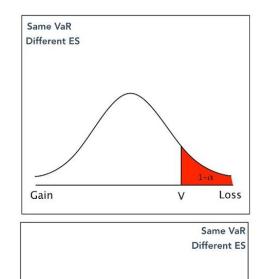

- Coefficient of Variation (CV) = SD/Mean
- Often used to depict volatility, symmetric measures

II. Variability of Outcomes

Skewness and Kurtosis (higher moments of distribution)


 Partial moments: Semi-variance, Semi-standard deviation (Downside risk)

$$SV_{lower}(X) = \frac{1}{n-1} \sum \left[(X - \bar{X})^2 \cdot IF(X \le \bar{X}) \right]$$

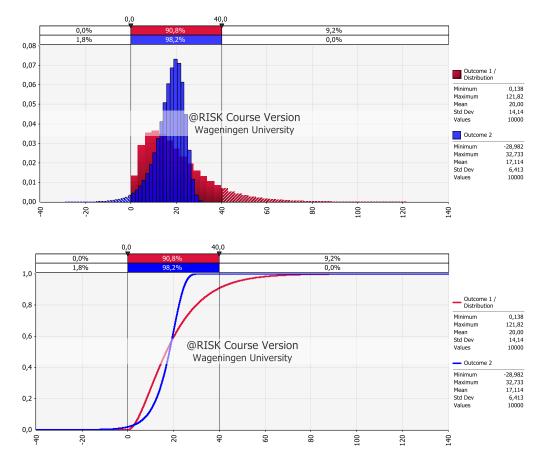


III. Chance of Bad Outcomes

- P(X < X*) with X* = minimally acceptable outcome (0?)
- Value At Risk: VaR_{a%} (threshold loss value)
- Expected Tail Loss (ETL) or Expected Shortfall (ES)

• Specify α % (threshold loss value) and reference period

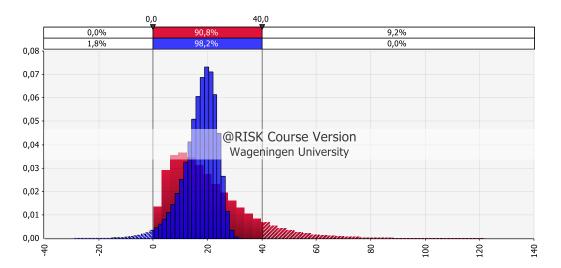
Gain



Loss

How to Select a Risk Measure?

Which distribution is more risky?


Assume this is a positive outcome you care about (e.g. income)

How to Select a Risk Measure?

	Min	Мах	Mean	SD	С	Skewness	Kurtosis	P<0	P<10	VaR _{5%}	ETL _{5%}
RED	0.14	121.82	20.00	14.14	70.69%	1.407	5.908	0.00%	26.43%	3.55	20.00
BLUE	-28.98	32.73	17.11	6.41	37.47%	-1.137	5.363	1.82%	12.66%	5.14	17.11

How to Select a Risk Measure?

- "Aiming for consensus on the definition of risk based on risk metrics is not meaningful" (Aven, 2023)
- Depending on your view on risk (always define it!)
- In line with your theory, for example
 - Portfolio analysis using mean-variance approach
 - Goal: company minimizing probability of making a loss
- Depending on its properties
 - Symmetric measure? (volatility matters)
 - Downside risk or not?
- Consider a combination of measures
- General risk measures, axiomatic view, convex/coherent risk measures

Aven, T. (2023). Is the definition of risk still contested?. *Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability*, 237(1), 3-3.

Coherent Risk Measures

- Theory from financial economics/ mathematical finance
- Introduced by Artzner et al. (1999) good luck reading that
- Set of properties that matter for risk measures:
 - Normalization (The risk of nothing is zero)
 - Monotonicity (a security that always has higher return in all future states has less risk of loss)
 - Sub-additivity (diversification is risk reducing)
 - Positive homogeneity (if a portfolio doubles, the risk will also be doubled)
 - Translation invariance (if an amount is added to a portfolio, then the risk is reduced by that amount)
 - (more have been developed)

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. "Coherent measures of risk." Mathematical finance 9, no. 3 (1999): 203-228.

Coherent Risk Measures

- No single risk measure meets all of these properties!
- A risk measure captures only some of the characteristics of risk, every risk measure is incomplete.
- Any sensible risk measure needs to obey at least normalization, monotonicity and translation invariance
- Coherent risk measures also in addition meet sub-additivity, and positive homogeneity
- This underscores the importance of using diverse risk measures
- For examples
 - Variance is not coherent (not sub-additive), SD is

 $\operatorname{var}(X+Y) = \operatorname{var}(X) + \operatorname{var}(Y) + 2\rho(X,Y)\operatorname{sd}(X)\operatorname{sd}(Y) \qquad \operatorname{sd}(X+Y) \le \operatorname{sd}(X) + \operatorname{sd}(Y)$

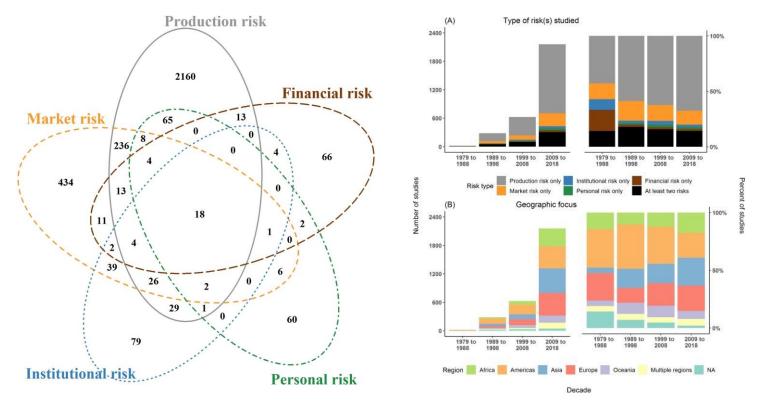
• VaR is not a coherent (not sub-additive), ES is

4. Characterizing Farm-Level Risk Exposure

How to approach this?

Subjective vs Objective

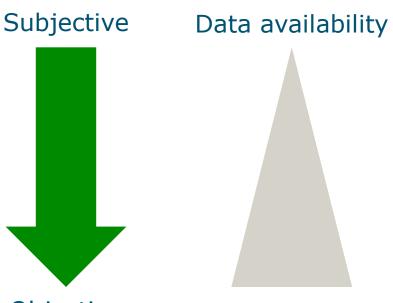
Data availability/source


- Primary (survey) data vs. secondary data
- Sparse data <> abundant data <> too much data?

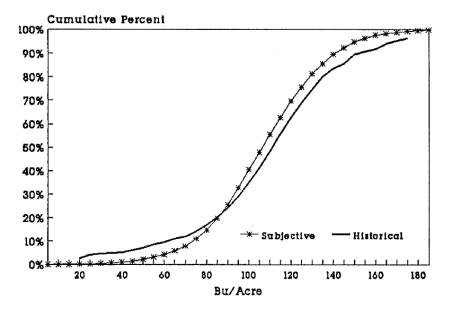
Types of risk

Market, Production, Financial, Institutional and Personal (+more!)

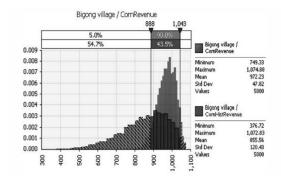
Different Types of Risk



Komarek, A. M., De Pinto, A., & Smith, V. H. (2020). A review of types of risks in agriculture: What we know and what we need to know. *Agricultural Systems*, *178*, 102738.

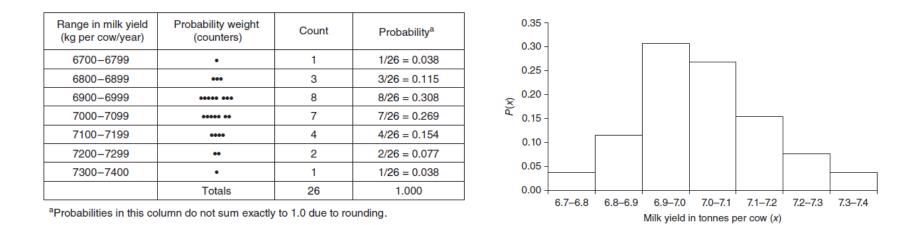

3 Main Approaches

Elicit with decision maker full CDF



Pease, J. W. (1992). A comparison of subjective and historical crop yield probability distributions. Journal of Agricultural and Applied Economics, 24(2), 23-32.

... Or parts of it to construct it


If you grow corn or wheat, identify the lowest yield you believe possible, the yield that you believe is most likely to be received, and the highest possible yield you believe possible (jim/mu) in *the next crop year (2010/11)* If you do not recall exacts, please answer to nearest within 10 jim/mu

Crop	Lowest possible yield (jin/mu)	Most likely yield (jin/mu)	Highest possible yield (jin/mu)
1 Corn			
2 Wheat			

Turvey, C. G., Gao, X., Nie, R., Wang, L., & Kong, R. (2013). Subjective risks, objective risks and the crop insurance problem in rural China. The Geneva Papers on Risk and Insurance-Issues and Practice, 38(3), 612-633.

Visual impact method (Hardaker et al. 2015)

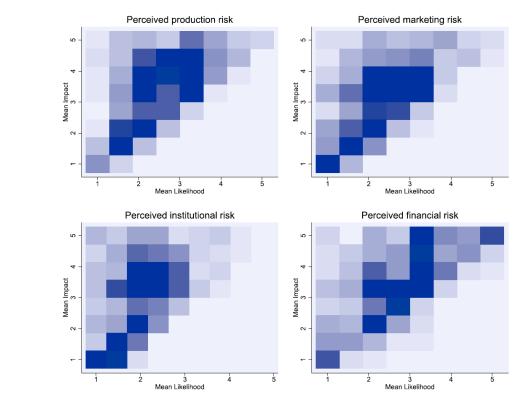
UNIVERSITY & RESEARCH

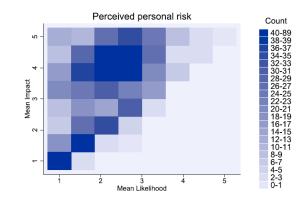
Hardaker, J. B., Lien, G., Anderson, J. R., & Huirne, R. B. (2015). Coping with risk in agriculture: Applied decision analysis. CABI

Using Likert scales

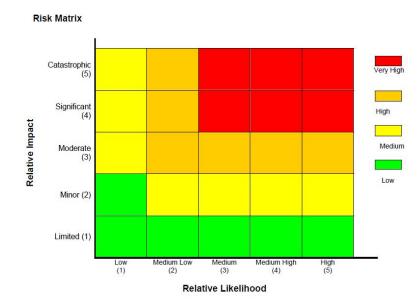
What are the chances of the following developments to happen on your farm, in the near future:	Low probability				р	High probability			
Loss of production due to (extreme) weather conditions	1	-	2	-	3	-	4	-	5
Loss of production due to disease (epidemic)	1	-	2	-	3	-	4	-	5

What is the impact on your farm in case the following developments did


occur	Lo	w ir	npa	ict		Hig	gh ir	np	act
Loss of production due to (extreme) weather conditions	1	-	2	-	3	-	4	-	5
Loss of production due to disease (epidemic)	1	-	2	-	3	-	4	-	5


To what extend can you personally influence the occurrence or impact of the following developments:	Low influence ir				infl	High influence			
Loss of production due to (extreme) weather conditions	1	-	2	-	3	-	4	-	5
Loss of production due to disease (epidemic)	1	-	2	-	3	-	4	-	5

Wauters, E., Van Winsen, F., de Mey, Y., & Lauwers, L. (2014). Risk perception, attitudes towards risk and risk management: evidence and implications. Agricultural Economics–Czech, 60(9), 389-405.


Creating Heatmaps

Feyisa, A. D., Maertens, M., & de Mey, Y. (2023). Relating risk preferences and risk perceptions over different agricultural risk domains: Insights from Ethiopia. World Development, 162, 106137.

One word of caution... about muddy waters

II. Simulation

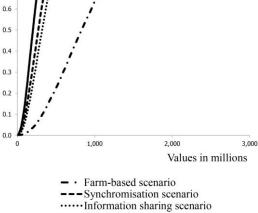
General approach

- Stylize your problem using equations
- Define your output, and inputs affecting it
- Impose distributions on the stochastic inputs
- Parametrize model using data + expert elicitation
- Using Monte Carlo simulation, simulate input distributions across n iterations (e.g. using R or @Risk in Excel)
- Obtain empirical distribution of output > risk measures

Lien, H. H., de Mey, Y., Nhan, D. K., Bush, S., & Meuwissen, M. P. (2024). Can cooperation reduce yield risks associated with infectious diseases in shrimp aquaculture in Vietnam?. *Aquaculture Economics & Management*, 1-21.

43

II. Simulation


 $ext{Yield}_{potential} = rac{ ext{Yield}_{reference}}{ig(1 - ext{Prevalence}_{reference}ig) imes ig(1 - ext{Mortality}_{reference}ig)}.$

 $\text{Yield}_{disease} = \text{Yield}_{potential} \times (1 \text{-} \text{Prevalence}) \times (1 \text{-} \text{Mortality})$

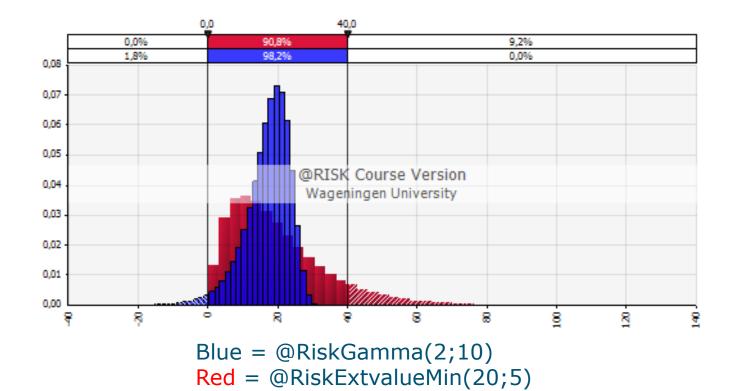
Variable	Unit	Distribution	Description		Scen	ario	
Variable	Unit	one Distribution Description		Farm-based	Synchronization ⁱ	Information sharing ⁱ	Combination
Yieldreference	kg/ha/crop	Normal	Mean; SD	3.080; 1.403 ^a			
Prevalence rate _{reference}	% per crop	Uniform	Min; Max	10; 20 ^a			
Mortality rate _{reference}	% per crop	Uniform	Min: Max	10; 30 ^b			
Number of crops	#/year	Discrete	Value	1; 2; 39			
			Probability	0.35; 0.59; 0.06 ^g			
Shrimp price	1,000 VND/kg	Pert	Min; ML; Max	30; 130; 190 ^h			
WSD							
Prevalence rate-Lit	% per crop	Uniform	Min: Max	40; 71 ^c			
Prevalence rate–W*	% per crop	Pert	Min; ML; Max		29; 43; 64	40; 52; 66	41; 54; 71
Prevalence rateW**	% per crop	Pert	Min; ML; Max		31; 48; 59	34; 51; 62	29; 39; 54
Mortality rate-Lit	% per crop	Uniform	Min; Max	80; 100 ^d			
Mortality rate–W*	% per crop	Pert	Min; ML; Max		76; 87; 97	80; 89; 99	70; 79; 88
Mortality rate-W**	% per crop	Pert	Min: ML: Max		56; 64; 78	64: 72: 86	47; 57; 70
AHPND	in the mate						
Prevalence rate–Lit	% per crop	Uniform	Min: Max	52; 87 ^e			
Prevalence rate–W*	% per crop	Pert	Min; ML; Max		41; 54; 72	48; 70; 80	41; 51; 71
Prevalence rate–W**	% per crop	Pert	Min; ML; Max		29; 45; 58	42; 55; 70	29; 40; 55
Mortality rate-Lit	% per crop	Uniform	Min; Max	40; 100 ^f			
Mortality rate–W*	% per crop	Pert	Min; ML; Max		40; 56; 89	38; 64; 89	34; 54; 78
Mortality rate–W**	% per crop	Pert	Min; ML; Max		31; 47; 60	40; 55; 72	29; 43; 56

Notes: Lit: literature; W*: workshop in English; W**: workshop in Vietnamese; min: Minimum; ML: most likely; Max: maximum; SD: standard deviation.

Source: *Phong et al., 2021; ^b Ngoc et al., 2021; ^cDesrina et al., 2022; ^dOIE 2021 and Thitamadee et al., 2016; ^eNguyen et al., 2021; ^fBoonyawiwat et al., 2018 and OIE 2021; ^gDuy et al., 2021; ^bLe et al., 2022; ^fExpert elicitation in two workshops.

——Combination scenario

Lien, H. H., de Mey, Y., Nhan, D. K., Bush, S., & Meuwissen, M. P. (2024). Can cooperation reduce yield risks associated with infectious diseases in shrimp aquaculture in Vietnam?. *Aquaculture Economics & Management*, 1-21.


10.000 iterations

WSD based in Vietnamese workshop

1.0

0.9 0.8 0.7

II. Simulation

III. Data-driven / Econometrics

In very general terms

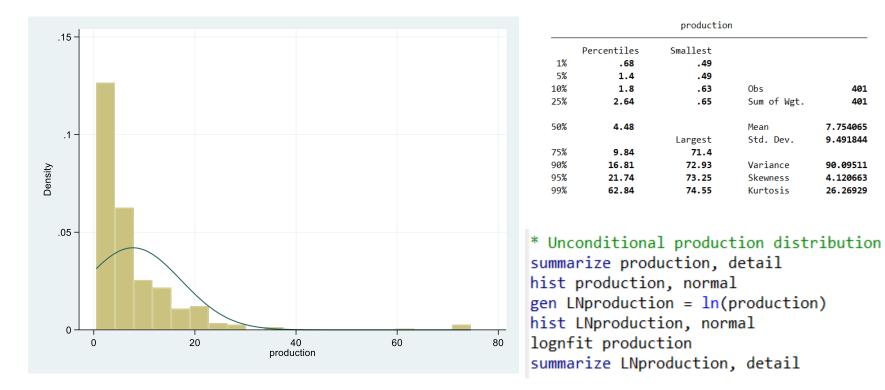
- You want to estimate the distribution of a "risky" variable Y
- Assuming you have a series of observations for Y (across i and t)
- Conditional versus unconditional approaches
 - Unconditional: curve-fitting exercise (ML based)
 - Conditional: understanding and capturing the DGP
- Parametric, Non-parametric, and Semi-parametric approaches
- Very diverse approaches depending on field/risk (e.g. time series econometrics for price / financial risk)

III. Data-driven / Econometrics

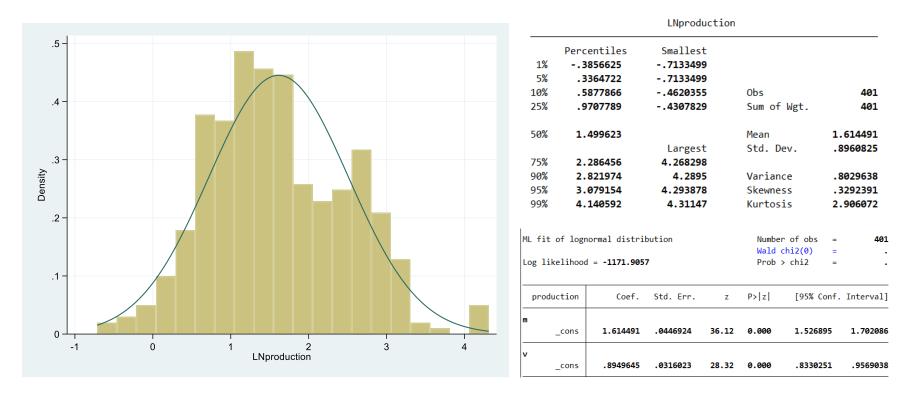
- Impossible to summarize all approaches, so as an example, let's focus on production risk
- We have 401 observations of rice producing farms in Senegal

Variable	Explanation	Mean	Std. Dev.
production	Rice production in tonnes	7.75	9.49
land	Land cultivated in ha	1.59	1.84
seed	Seed used in kg	204.51	245.48
labour	Labour used in man x days	87.73	55.49
fertilizer	Fertiliser applied in kg	540.23	661.49
irrgcost	Total costs spent on irrigation in 10 ³ FCFA	97529.10	112157.00
weed	Total costs spent on weeding in 10 ³ FCFA	49727.16	69124.87
bird	Total time spent on bird scaring in man x days	36.18	40.70

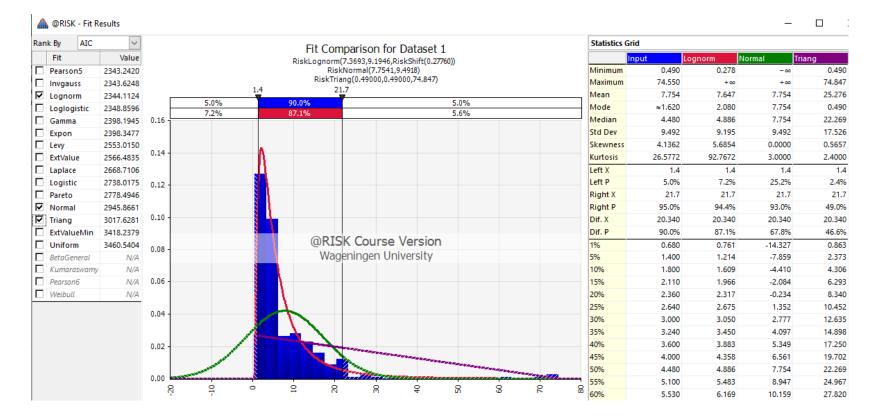
I present Stata code and results in what follows

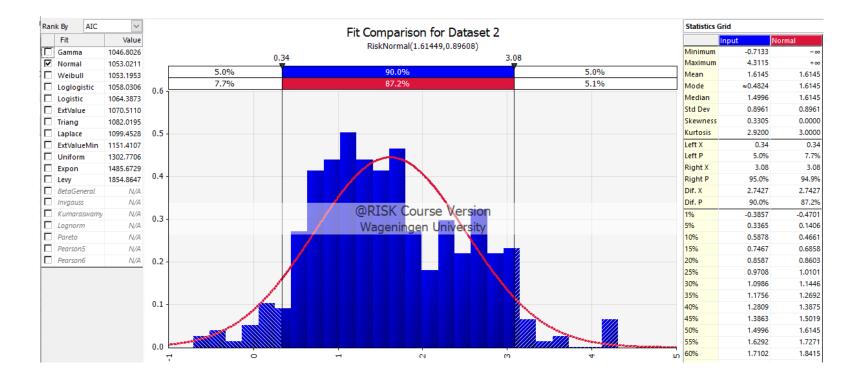


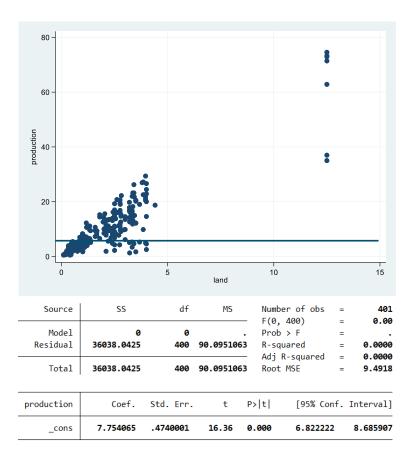
de Mey, Y., Demont, M., & Diagne, M. (2012). Estimating bird damage to rice in Africa: evidence from the Senegal River Valley. *Journal of Agricultural Economics*, *63*(1), 175-200.


III. Data-driven / Econometrics

- Impossible to summarize all approaches, so as an example, let's focus on production risk
- We have 401 observations of rice producing farms in Senegal
- We will:
 - First explore production risk unconditionally
 - Next consider influential factors, measuring conditional risk
 - Finally consider an econometric framework that allows conditional risk estimation and its determinants: stochastic production functions / moment-based approach







		production	ו	
	Percentiles	Smallest		
1%	.68	.49		
5%	1.4	.49		× 7
10%	1.8	.63	E[x -	$ \mu_x)^r $
25%	2.64	.65	$\mathbf{L}[(w$	μx)]
50%	4,48		Maaa	7 754065
20%	4.48		Mean	7.754065
		Largest	Std. Dev.	9.491844
75%	9.84	71.4		
90%	16.81	72.93	Variance	90.09511
95%	21.74	73.25	Skewness	4.120663
99%	62.84	74.55	Kurtosis	26,26929

```
* Unconditional production distribution 2
scatter production land
regress production
predict r, res
gen r2 = r*r
sum r2
display r(mean)*r(N)/(r(N)-1)
```

. display r(mean)*r(N)/(r(N)-1) 90.095105


```
* Conditional production distribution
graph twoway (lfit production land) (scatter production land)
regress production land
predict r_land, res
gen r2_land = r_land*r_land
sum r2_land
display r(mean)*r(N)/(r(N)-1)
```

90.095105

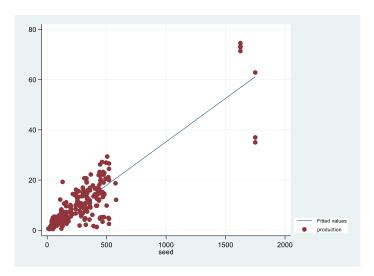
15.709734

80 -			
60 -		•	
40 -		:	
20-			
	5	10	Fitted values production

	Source	SS	df	MS	Number of obs	=	401
					F(1, 399)	=	1889.26
Model	Model 2	29754.1488	1	29754.1488	Prob > F	=	0.0000
Residual	Residual 6	6283.89366	399	15.7491069	R-squared	=	0.8256
					Adj R-squared	=	0.8252
Total	Total	36038.0425	400	90.0951063	Root MSE	=	3.9685
Residual	Residual 6	6283.89366	399	15.7491069	Prob > F R-squared Adj R-squared	= = =	0.000 0.825 0.825

production	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
land _cons	4.692769 .2979449	.1079651 .2621083				4.905021 .8132308


```
* Conditional production distribution 2
regress production land seed
predict r_land_seed, res
gen r2_land_seed = r_land_seed*r_land_seed
sum r2_land_seed
display r(mean)*r(N)/(r(N)-1)
```



Source	SS	df	MS	Number of obs	=	401
				F(2, 398)	=	1015.20
Model	30131.6167	2	15065.8083	Prob > F	=	0.0000
Residual	5906.42582	398	14.8402659	R-squared	=	0.8361
				Adj R-squared	=	0.8353
Total	36038.0425	400	90.0951063	Root MSE	=	3.8523

production	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
land	9.966935	1.051005	9.48	0.000	7.900721	12.03315
seed	0396852	.0078688	-5.04	0.000	0551549	0242156
_cons	.034107	.2597556	0.13	0.896	4765576	.5447715

Stochastic production function approach (Just and Pope, 1978/79)

- $Y_{i,t} = g(t) + m(X_{i,t}) + \varepsilon_{i,t}h(i,t)$
 - g(t) is a time trend (technological advance)

Journal of Agricultural Economics 61 (2): 276-284.

- m(X_t) captures the effects of influencing factors (inputs, weather, soil conditions, etc.)
- ϵ_t is an error term with zero mean and potential heteroskedasticity through variance h(i,t)

Just, R. E., R. D. Pope. 1978. Stochastic specification of production functions and economic implications. Journal of Econometrics 7 (1): 67-86. Just, R. E., R. D. Pope. 1979. Production Function Estimation and Related Risk Considerations. American

Stochastic production function approach (Just and Pope, 1978/79)

- $Y_{i,t} = g(t) + m(X_{i,t}) + \varepsilon_{i,t}h(i,t)$
 - $h(i,t) = h(Z_{i,t})$
 - Where Z_{i,t} is a vector of factors influencing variance. Typically contains the inputs: can be characterised as risk increasing, risk neutral or risk decreasing
- Extended to the higher moments by Antle (1983): impact on skewness, kurtosis, ...
- Many more extensions such as focussing on downside risk by looking at semi-variance

Conditional Production Risk and Determinants

```
* Mean
xtreg LNproduction LNland LNseed LNlabour LNfertilizer LNirrgcost LNweed LNbird i.year, fe
est store mean
predict e. e
predict ue, ue
gen e2=e*e
gen e3=e*e*e
gen e4=e*e*e*e
* Variance
xtreg e2 LNland LNseed LNlabour LNfertilizer LNirrgcost LNweed LNbird i.year, fe
est store variance
* Skewness
xtreg e3 LNland LNseed LNlabour LNfertilizer LNirrgcost LNweed LNbird i.year, fe
est store skewness
* Kurtosis
xtreg e4 LNland LNseed LNlabour LNfertilizer LNirrgcost LNweed LNbird i.year, fe
est store kurtosis
* Semi-variance
xtreg e2 LNland LNseed LNlabour LNfertilizer LNirrgcost LNweed LNbird i.year if ue<=0, fe
est store semi variance
* Overview Table
esttab mean variance skewness kurtosis semi variance, star(* 0.1 ** 0.05 *** 0.01) drop(*.vear) mtitles(Mean Variance Skewness Kurtosis Semi-var)
```


Conditional Production Risk and Determinants


	(1) Mean	(2) Variance	(3) Skewness	(4) Kurtosis	(5) Semi-var
LNland	0.862***	-0.0513	0.0116	-0.00190	-0.193
	(4.18)	(-0.53)	(0.09)	(-0.01)	(-1.01)
LNseed	-0.299*	0.120	-0.106	0.109	0.296*
	(-1.95)	(1.64)	(-1.05)	(0.91)	(1.86)
LNlabour	0.129***	-0.0395*	0.0706**	-0.0882**	-0.110**
	(2.64)	(-1.71)	(2.20)	(-2.33)	(-2.26)
LNfertilizer	0.150**	-0.0236	0.0285	-0.0412	-0.101
	(1.99)	(-0.66)	(0.57)	(-0.71)	(-1.22)
LNirrgcost	0.110	-0.00144	0.0174	-0.00726	0.113
	(0.83)	(-0.02)	(0.20)	(-0.07)	(0.95)
LNweed	0.0502*	-0.00877	-0.00599	0.00656	0.00484
	(1.81)	(-0.67)	(-0.33)	(0.30)	(0.08)
LNbird	-0.0213	0.00168	-0.00260	0.000992	-0.0107
	(-1.23)	(0.21)	(-0.23)	(0.07)	(-0.54)
_cons	0.0486	-0.123	-0.0699	0.0976	-1.630
	(0.03)	(-0.15)	(-0.06)	(0.07)	(-1.08)
N	401	401	401	401	180

t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Key/Take Home Messages I

- Our <u>knowledge</u> on these dimensions matters and leads to risk, uncertainty, ambiguity, and ignorance.
- Risk usually has a distinct set of <u>features</u>, explore and explain these in your context.
- Various <u>definitions</u> of risk exist, be explicit in your paper.
- Risk is inherently <u>subjective</u>, and that is fine.
- An <u>objective versus subjective view/approach</u> depends on the application.

Key/Take Home Messages II

Among the diverse set of risk measures (and related concepts), all are <u>incomplete</u>. So choose wisely or combine measures.

- Align your risk measure with your view on / definition of risk having your decision maker or research subject in mind.
- Different risk measure = <u>different level</u> of risk.
- Consider looking at multiple risks <u>jointly</u>, rather than single sources
- Various <u>approaches</u> exist to characterizing farm-level risk exposure, typically your research question and data availability/reliability will guide your choice.
- We discussed <u>direct elicitation</u> vs. <u>simulation</u> vs. <u>econometrics</u>

Summer School @WUR, 24-28 June 2024

Education & Research & Value Creation & Programmes Results Cooperation

Search Q

Home 🔹 🔪 Risk Analysis and Risk Management in Agriculture: Updates on Modelling and Applications - 3 ECTS

Summer school

Risk Analysis and Risk Management in Agriculture: Updates on Modelling and Applications - 3 ECTS

The farm sector is affected by a large and changing set of risk sources including more volatile producer prices, unusual weather patterns, upstream and downstream market power along the value chain, increasing dependence on financial institutions, and political risks. This induces the need for (new) risk management tools. Also the Common Agricultural Policy is considering risk management as an important component of agricultural policy.

Organised by	<u>Wageningen School of Social</u> <u>Sciences (WASS)</u>
Date	Mon 24 June 2024 until Fri 28 June 2024
Duration	Registration deadline:10 June 2024
Venue	Leeuwenborch, building number 201 Hollandseweg 1 201 6706 KN Wageningen +31 (0)317 48 36 39

Contact person (content): <u>Miranda Meuwissen</u> Contact person (logistics): Marcella Haan

Lecturers

prof.dr.ir. MPM (Miranda) Meuwissen Personal Professor

dr.ir. Y (Yann) de Mey Associate Professor

dr. TPF (Tobias) Dalhaus Assistant Professor

dr. FG (Fabio) Santeramo Associate Professor Foggia University, Italy https://www.wur.nl/en/activi ty/risk-analysis-and-riskmanagement-in-agricultureupdates-on-modelling-andapplications-3-ects.htm

Some References – Risk in Agriculture

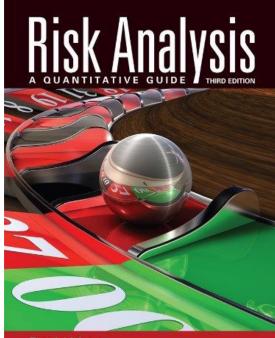
J. Brian Hardaker, Gudbrand Lien, Jock R. Anderson and Ruud B.M. Huime

Managing Risk in Agriculture

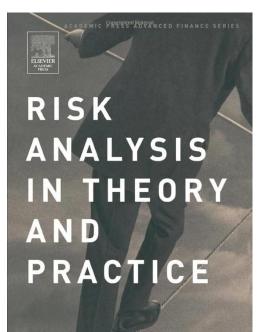
A Development Perspective

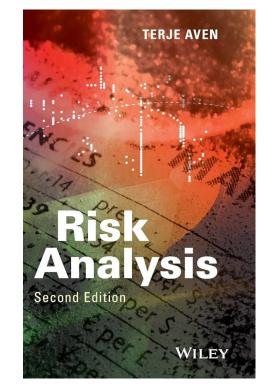
Edited by Ashok K. Mishra, Subal C. Kumbhakar and Gudbrand Lien

Natural Resource Management and Policy Ariel Dinar and David Zilberman, Series Editors

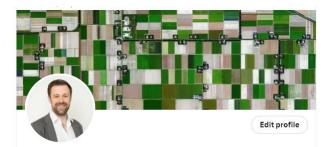

A Comprehensive Assessment of the Role of Risk in U.S. Agriculture

edited by Richard E. Just Rulon D. Pope


Springer Science+Business Media, LLC


Some References – Risk Analysis in General

David Vose


JEAN-PAUL CHAVAS

Thanks! Questions?

yann.demey@wur.nl

Yann de Mey @YanndeMey

Associate Professor @WURbec interested in digitalization of agricultural risk analysis | @AgEconMeet | || living in = | Feminist

https://www.linkedin.com/in/yanndemey

